
2026/02/18 15:13 1/7 REGULATION ET ASSERVISSEMENT

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

REGULATION ET ASSERVISSEMENT

COURS

TSSI cours asservissement.pdf

TP – Régulation de vitesse d’un moteur à courant continu avec PID

Objectifs du TP

Mesurer la vitesse d’un moteur CC avec un codeur incrémental
Comprendre la différence entre boucle ouverte et boucle fermée
Mettre en œuvre progressivement un correcteur P, puis PI, puis PID
Observer l’erreur statique, le dépassement et la sensibilité au bruit

Travail demandé

Décrire la réponse du moteur en boucle ouverte
Tracer ou décrire la courbe vitesse / consigne pour P
Expliquer pourquoi un écart statique persiste
Montrer comment I supprime cet écart
Comparer les dépassements pour P, PI et PID
Conclure sur l’intérêt des trois termes du PID

1) Commande du moteur en boucle ouverte

Manipulations :

Choisir le mode boucle ouverte
Choisir une consigne en
Observer la vitesse indiquée par le programme
Bloquer légèrement l’axe du moteur avec le doigt

Observations attendues :

La vitesse chute immédiatement lorsque l’axe est freiné
Le moteur ne corrige pas cette chute : c’est normal en boucle ouverte
La vitesse dépend de la charge, des frottements et de la tension

Conclusion : La boucle ouverte ne permet pas de maintenir une vitesse constante

https://mistert.freeboxos.fr/dokuwiki/lib/exe/fetch.php?tok=80b64e&media=https%3A%2F%2Fmistert.freeboxos.fr%2Fcours%2F_%2F_herbin%2FTSI-2022%2Fr%C3%A9gulation%20-%20asservissement%2FTSSI%20cours%20%20asservissement.pdf

Last
update:
2025/11/29
14:37

ssi_elec_regulation_asservissement https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764427045

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 15:13

2) Mise en place d’un correcteur P (Proportionnel)

Manipulations :

Activer le correcteur proportionnel :
Fixer une consigne (ex : 1500 tr/min)
Le programme convertit automatiquement en ticks/s
Freiner légèrement le moteur avec le doigt
Augmenter progressivement K_p : 0.2 → 0.5 → 1.0 → 2.0

Observations attendues :

Le moteur augmente la PWM pour compenser la perturbation
La vitesse remonte partiellement
Il reste un écart statique :
Si K_p devient trop grand : oscillations, vibrations, instabilité

Conclusion : Le correcteur P réduit l’erreur, mais ne la supprime pas

3) Mise en place du correcteur I (Intégral)

Manipulations :

Ajouter le terme intégral :

Débuter avec = 0.05, puis 0.1 max
Freiner l’axe puis relâcher

Observations attendues :

L’erreur statique disparaît
La vitesse atteint précisément la consigne
Si trop fort : dépassement, oscillations lentes, instabilité

Conclusion : Le correcteur I supprime l’erreur statique, mais ne doit jamais être trop fort

4) Mise en place du correcteur D (Dérivé)

Manipulations :

Ajouter le terme dérivé :

2026/02/18 15:13 3/7 REGULATION ET ASSERVISSEMENT

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

Tester avec = 0.01, puis 0.05
Freiner l’axe pour observer la réaction

Observations attendues :

Le système est mieux amorti
Le dépassement diminue
La stabilité augmente

Attention : Si trop élevé → bruit, vibrations, instabilité

Conclusion : Le terme D stabilise le système, mais n’améliore pas la précision

Synthèse des rôles P / I / D

Correcteur Rôle principal Risques si trop fort
P réduit l’erreur oscillations
I supprime l’erreur statique dépassement, instabilité
D amortit, stabilise amplification du bruit

Code Arduino du TP (consigne en tr/min, PID en ticks/s)

/*
 ======================================
 TP REGULATION : MODE BO / MODE PID
 ======================================

 MODE BO :
 - PWM = conversion(consigne_tr/min)
 - codeur mesure mais NE corrige PAS
 - aucune régulation

 MODE PID :
 - consigne tr/min convertie en ticks/s
 - codeur mesure vitesse
 - PID corrige PWM
*/

const int TICKS_PAR_TOUR = 20; // à ajuster selon le codeur

// --- Pont en H ---
const int M_AV = 3; // PWM forward
const int M_AR = 6; // PWM reverse

// --- Codeur ---
const int canalA = 2;
const int canalB = 11;

Last
update:
2025/11/29
14:37

ssi_elec_regulation_asservissement https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764427045

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 15:13

volatile long ticks = 0;

// --- PID ---
float kp = 0.8;
float ki = 0.1;
float kd = 0.05;

float erreur, erreurPrec = 0;
float integral = 0;

float consigne_rpm = 0; // consigne entrée par Serial (tr/min)
float consigne_ticks_s = 0; // consigne convertie pour le PID

// --- Modes ---
enum Mode { BO, PID_MODE };
Mode mode = BO;

// --- Mesure ---
unsigned long lastMeasure = 0;
const unsigned long period = 100; // 100 ms

// ============ INTERRUPTIONS CODEUR ============
void ISR_codeur() {
 if (digitalRead(canalB))
 ticks++;
 else
 ticks--;
}

// ============ CONVERSION tr/min -> PWM (BO) ============
int rpmToPWM(float rpm) {
 // Ajuste selon ton moteur
 // Ex : 0–3000 tr/min -> 0–255 PWM
 if (rpm < 0) rpm = 0;
 if (rpm > 3000) rpm = 3000;

 return map(rpm, 0, 3000, 0, 255);
}

// ============ CONVERSION tr/min -> ticks/s (PID) ============
float rpmToTicksSec(float rpm) {
 return (rpm * TICKS_PAR_TOUR) / 60.0;
}

// ============ COMMANDE MOTEUR ============

2026/02/18 15:13 5/7 REGULATION ET ASSERVISSEMENT

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

void setPWM(int pwm) {
 if (pwm >= 0) {
 digitalWrite(M_AR, LOW);
 analogWrite(M_AV, pwm);
 } else {
 digitalWrite(M_AV, LOW);
 analogWrite(M_AR, -pwm);
 }
}

// ===
// SETUP
// ===
void setup() {
 Serial.begin(9600);

 pinMode(M_AV, OUTPUT);
 pinMode(M_AR, OUTPUT);
 pinMode(canalB, INPUT);

 attachInterrupt(digitalPinToInterrupt(canalA), ISR_codeur, RISING);

 Serial.println("=== TP REGULATION : BO / PID ===");
 Serial.println("Tapez BO ou PID pour changer de mode.");
 Serial.println("Tapez une consigne en tr/min (ex : 1500)");
}

// ===
// LOOP
// ===
void loop() {

 // ----------- Lecture mode / consigne ------------
 if (Serial.available() > 0) {
 String txt = Serial.readStringUntil('\n');
 txt.trim();

 if (txt.equalsIgnoreCase("BO")) {
 mode = BO;
 Serial.println("Mode = BOUCLE OUVERTE");
 return;
 }

 if (txt.equalsIgnoreCase("PID")) {
 mode = PID_MODE;
 Serial.println("Mode = PID");
 return;
 }

Last
update:
2025/11/29
14:37

ssi_elec_regulation_asservissement https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764427045

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 15:13

 // Sinon c'est une consigne tr/min
 consigne_rpm = txt.toFloat();
 consigne_ticks_s = rpmToTicksSec(consigne_rpm);

 Serial.print("Consigne = ");
 Serial.print(consigne_rpm);
 Serial.print(" tr/min -> ");
 Serial.print(consigne_ticks_s);
 Serial.println(" ticks/s");
 }

 // ----------- Mesure toutes les 100 ms -----------
 unsigned long now = millis();
 if (now - lastMeasure < period) return;
 lastMeasure = now;

 long ticks_mes = ticks;
 ticks = 0;

 float vitesse_ticks_s = ticks_mes * (1000.0 / period);
 float vitesse_rpm = (vitesse_ticks_s * 60.0) / TICKS_PAR_TOUR;

 // ==
 // MODE BO
 // ==
 if (mode == BO) {

 int pwm = rpmToPWM(consigne_rpm); // conversion directe consigne → PWM
 setPWM(pwm);

 Serial.print("[BO] consigne = ");
 Serial.print(consigne_rpm);
 Serial.print(" tr/min | vitesse = ");
 Serial.print(vitesse_ticks_s);
 Serial.print(" ticks/s | ");
 Serial.print(vitesse_rpm);
 Serial.print(" tr/min | PWM = ");
 Serial.println(pwm);

 return;
 }

 // ==
 // MODE PID
 // ==
 if (mode == PID_MODE) {

2026/02/18 15:13 7/7 REGULATION ET ASSERVISSEMENT

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

 erreur = consigne_ticks_s - vitesse_ticks_s;
 integral += erreur * (period / 1000.0);
 float deriv = (erreur - erreurPrec) / (period / 1000.0);
 erreurPrec = erreur;

 float commande = kp * erreur + ki * integral + kd * deriv;

 // saturation
 if (commande > 255) commande = 255;
 if (commande < -255) commande = -255;

 setPWM(commande);

 Serial.print("[PID] consigne = ");
 Serial.print(consigne_rpm);
 Serial.print(" tr/min | vitesse = ");
 Serial.print(vitesse_ticks_s);
 Serial.print(" ticks/s | ");
 Serial.print(vitesse_rpm);
 Serial.print(" tr/min | PWM = ");
 Serial.println(commande);

 return;
 }
}

From:
https://mistert.freeboxos.fr/dokuwiki/ - Wiki de Sébastien TACK

Permanent link:
https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764427045

Last update: 2025/11/29 14:37

https://mistert.freeboxos.fr/dokuwiki/
https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764427045

	[REGULATION ET ASSERVISSEMENT]
	REGULATION ET ASSERVISSEMENT
	COURS
	TP – Régulation de vitesse d’un moteur à courant continu avec PID
	Objectifs du TP
	Travail demandé
	1) Commande du moteur en boucle ouverte
	2) Mise en place d’un correcteur P (Proportionnel)
	3) Mise en place du correcteur I (Intégral)
	4) Mise en place du correcteur D (Dérivé)
	Synthèse des rôles P / I / D

	Code Arduino du TP (consigne en tr/min, PID en ticks/s)

