2026/02/18 18:08 1/7 REGULATION ET ASSERVISSEMENT

REGULATION ET ASSERVISSEMENT

COURS

TSSI cours asservissement.pdf

TP - Régulation de vitesse d’'un moteur a courant continu avec PID

Objectifs du TP

e Mesurer la vitesse d'un moteur CC avec un codeur incrémental

e Comprendre la différence entre boucle ouverte et boucle fermée

e Mettre en ceuvre progressivement un correcteur P, puis PI, puis PID
e Observer I'erreur statique, le dépassement et la sensibilité au bruit

Travail demandé

Décrire la réponse du moteur en boucle ouverte
Tracer ou décrire la courbe vitesse / consigne pour P
e Expliguer pourquoi un écart statique persiste

e Montrer comment | supprime cet écart

e Comparer les dépassements pour P, Pl et PID

e Conclure sur I'intérét des trois termes du PID

1) Commande du moteur en boucle ouverte

Manipulations :

e Choisir le mode boucle ouverte

e Choisir une consigne en 1/ min

e Observer la vitesse indiquée par le programme
 Bloquer légerement I'axe du moteur avec le doigt

Observations attendues :

e La vitesse chute immédiatement lorsque I'axe est freiné
e Le moteur ne corrige pas cette chute : c’est normal en boucle ouverte
* La vitesse dépend de la charge, des frottements et de la tension

Conclusion : La boucle ouverte ne permet pas de maintenir une vitesse constante

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

https://mistert.freeboxos.fr/dokuwiki/lib/exe/fetch.php?tok=80b64e&media=https%3A%2F%2Fmistert.freeboxos.fr%2Fcours%2F_%2F_herbin%2FTSI-2022%2Fr%C3%A9gulation%20-%20asservissement%2FTSSI%20cours%20%20asservissement.pdf

Last
update:
2025/11/29
14:33

ssi_elec_regulation_asservissement https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764426798

2) Mise en place d’un correcteur P (Proportionnel)

Manipulations :

Activer le correcteur proportionnel : 1t = I, - ¢

Fixer une consigne (ex : 1500 tr/min)

Le programme convertit automatiquement en ticks/s
Freiner Iégérement le moteur avec le doigt

Augmenter progressivementK p:0.2-05-1.0- 2.0

Observations attendues :

Le moteur augmente la PWM pour compenser la perturbation
La vitesse remonte partiellement

Il reste un écart statique : vitesse reelle < consigne

Si K_p devient trop grand : oscillations, vibrations, instabilité

Conclusion : Le correcteur P réduit I’erreur, mais ne la supprime pas

3) Mise en place du correcteur | (Intégral)

Manipulations :

o Ajouter le terme intégral : u = K ,e: 4 Ay /f (1) df

e Débuter avec K | = 0.05, puis 0.1 max
e Freiner I'axe puis relacher

Observations attendues :

e L'erreur statique disparait
* La vitesse atteint précisément la consigne
 Si K I trop fort : dépassement, oscillations lentes, instabilité

Conclusion : Le correcteur | supprime I'erreur statique, mais ne doit jamais étre trop fort

4) Mise en place du correcteur D (Dérivé)

Manipulations :

: . e
e Ajouter le terme dérivé : u = K e; 4+ I ff dt: 4 "h”ﬂ
f

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 18:08

2026/02/18 18:08 3/7 REGULATION ET ASSERVISSEMENT

e Tester avec K D = 0.01, puis 0.05
* Freiner I'axe pour observer la réaction

Observations attendues :

* Le systeme est mieux amorti
¢ Le dépassement diminue
* La stabilité augmente

Attention : Si K_D trop élevé - bruit, vibrations, instabilité

Conclusion : Le terme D stabilise le systeme, mais n’améliore pas la précision

Synthese des roles P /1 /D

Correcteur Role principal Risques si trop fort

P réduit I'erreur oscillations

I supprime I'erreur statique dépassement, instabilité
D amortit, stabilise amplification du bruit

Code Arduino du TP (consigne en tr/min, PID en ticks/s)

/*
TP REGULATION : MODE BO / MODE PID
MODE BO :
- PWM = conversion(consigne tr/min)
- codeur mesure mais NE corrige PAS
- aucune régulation
MODE PID :
- consigne tr/min convertie en ticks/s
- codeur mesure vitesse
- PID corrige PWM
*/

const int TICKS PAR TOUR = 20; // a ajuster selon le codeur

// --- Pont en H ---
const int M AV = 3; // PWM forward
const int M AR = 6; // PWM reverse

// --- Codeur ---
const int canalA = 2
1

const int canalB = 11;

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

Last

gggg;i/zg ssi_elec_regulation_asservissement https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764426798

14:33

volatile long ticks = 0;

// --- PID
float kp =
float ki =
float kd =

’

[oMo Rl
O = 00

5;

float erreur, erreurPrec = 0;
float integral = 0;

float consigne rpm = 0; // consigne entrée par Serial (tr/min)
float consigne ticks s = 0; // consigne convertie pour le PID

// --- Modes ---
enum Mode { BO, PID MODE },;
Mode mode = BO;

// --- Mesure ---
unsigned long lastMeasure = 0;
const unsigned long period = 100; // 100 ms

// INTERRUPTIONS CODEUR
void ISR codeur() {
if (digitalRead(canalB))

ticks++;
else
ticks--;
}
// CONVERSION tr/min -> PWM (BO)

int rpmToPWM(float rpm) {
// Ajuste selon ton moteur
// Ex : 0-3000 tr/min -> 0-255 PWM
if (rpm < @) rpm = 0;
if (rpm > 3000) rpm = 3000;

return map(rpm, 0, 3000, 0, 255);

// CONVERSION tr/min -> ticks/s (PID)
float rpmToTicksSec(float rpm) {

return (rpm * TICKS PAR TOUR) / 60.0;
}

// COMMANDE MOTEUR

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 18:08

2026/02/18 18:08 5/7 REGULATION ET ASSERVISSEMENT

void setPWM(int pwm) {
if (pwm >= 0) {
digitalWrite(M AR, LOW);
analogWrite(M AV, pwm);
} else {
digitalWrite(M AV, LOW);
analogWrite(M AR, -pwm);
}
}

//
// SETUP
//
void setup() {
Serial.begin(9600);

pinMode (M_AV, OUTPUT);
pinMode (M AR, OUTPUT);
pinMode(canalB, INPUT);

attachInterrupt(digitalPinToInterrupt(canalA), ISR codeur, RISING);
Serial.println("=== TP REGULATION : BO / PID ===");

Serial.println("Tapez BO ou PID pour changer de mode.");
Serial.println("Tapez une consigne en tr/min (ex : 1500)");

//
// LOOP

//
void loop() {

/] -----ee-- Lecture mode / consigne ------------
if (Serial.available() > 0) {
String txt = Serial.readStringUntil('\n"');
txt.trim();

if (txt.equalsIgnoreCase("B0")) {
mode = BO;
Serial.println("Mode = BOUCLE OUVERTE");
return;

}

if (txt.equalsIgnoreCase("PID")) {
mode = PID MODE;
Serial.println("Mode = PID");
return;

}

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

Last

gggg;i/zg ssi_elec_regulation_asservissement https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764426798

14:33

// Sinon c'est une consigne tr/min
consigne rpm = txt.toFloat();

consigne ticks s = rpmToTicksSec(consigne rpm);
Serial.print("Consigne = ");
Serial.print(consigne rpm);
Serial.print(" tr/min -> ");
Serial.print(consigne ticks s);
Serial.println(" ticks/s");

[/ ----------- Mesure toutes les 100 ms -----------
unsigned long now = millis();

if (now - lastMeasure < period) return;

lastMeasure = now;

long ticks mes = ticks;
ticks = 0;

float vitesse ticks s = ticks mes * (1000.0 / period);
float vitesse rpm = (vitesse ticks s * 60.0) / TICKS PAR TOUR;

//
// MODE BO
//
if (mode == BO) {

int pwm = rpmToPWM(consigne rpm); // conversion directe consigne - PWM
setPWM(pwm) ;

Serial.print("[BO] consigne = ");
Serial.print(consigne rpm);
Serial.print(" tr/min | vitesse = ");

Serial.print(vitesse ticks s);
Serial.print(" ticks/s | ");
Serial.print(vitesse rpm);
Serial.print(" tr/min | PWM = ");

Serial.println(pwm);

o~~~ o~~~

return;

//
// MODE PID
//
if (mode == PID MODE) {

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 18:08

2026/02/18 18:08 7[7 REGULATION ET ASSERVISSEMENT

erreur = consigne ticks s - vitesse ticks s;

integral += erreur * (period / 1000.0);

float deriv = (erreur - erreurPrec) / (period / 1000.0);
erreurPrec = erreur;

float commande = kp * erreur + ki * integral + kd * deriv;

// saturation
if (commande > 255) commande = 255;
if (commande < -255) commande = -255;

setPWM(commande) ;

Serial.print("[PID] consigne = ");
Serial.print(consigne rpm);
Serial.print(" tr/min | vitesse = ");
Serial.print(vitesse ticks s);
Serial.print(" ticks/s | ");
Serial.print(vitesse rpm);
Serial.print(" tr/min | PWM = ");
Serial.println(commande);

return;

From:
https://mistert.freeboxos.fr/dokuwiki/ - Wiki de Sébastien TACK

Permanent link:
https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764426798 i

Last update: 2025/11/29 14:33

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

https://mistert.freeboxos.fr/dokuwiki/
https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764426798

	[REGULATION ET ASSERVISSEMENT]
	REGULATION ET ASSERVISSEMENT
	COURS
	TP – Régulation de vitesse d’un moteur à courant continu avec PID
	Objectifs du TP
	Travail demandé
	1) Commande du moteur en boucle ouverte
	2) Mise en place d’un correcteur P (Proportionnel)
	3) Mise en place du correcteur I (Intégral)
	4) Mise en place du correcteur D (Dérivé)
	Synthèse des rôles P / I / D

	Code Arduino du TP (consigne en tr/min, PID en ticks/s)

