2026/02/18 13:53 1/6 REGULATION ET ASSERVISSEMENT

REGULATION ET ASSERVISSEMENT

COURS

TSSI cours asservissement.pdf

TP - Régulation de vitesse d’'un moteur a courant continu avec PID

Objectifs du TP

e Mesurer la vitesse d'un moteur CC avec un codeur incrémental

e Comprendre la différence entre boucle ouverte et boucle fermée

e Mettre en ceuvre progressivement un correcteur P, puis PI, puis PID
e Observer I'erreur statique, le dépassement et la sensibilité au bruit

Travail demandé

Décrire la réponse du moteur en boucle ouverte
Tracer ou décrire la courbe vitesse / consigne pour P
e Expliguer pourquoi un écart statique persiste

e Montrer comment | supprime cet écart

e Comparer les dépassements pour P, Pl et PID

e Conclure sur I'intérét des trois termes du PID

1) Commande du moteur en boucle ouverte

Manipulations :

* Envoyer une commande PWM fixe (ex : 50 %, puis 80 %) * Observer la vitesse indiquée par le
programme * Bloquer légerement I'axe du moteur avec le doigt

Observations attendues :

* La vitesse chute immédiatement lorsque I'axe est freiné * Le moteur ne corrige pas cette chute :
c’est normal en boucle ouverte * La vitesse dépend de la charge, des frottements et de la tension

Conclusion : La boucle ouverte ne permet pas de maintenir une vitesse constante

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/


https://mistert.freeboxos.fr/dokuwiki/lib/exe/fetch.php?tok=80b64e&media=https%3A%2F%2Fmistert.freeboxos.fr%2Fcours%2F_%2F_herbin%2FTSI-2022%2Fr%C3%A9gulation%20-%20asservissement%2FTSSI%20cours%20%20asservissement.pdf

Last
update:
2025/11/29
14:15

ssi_elec_regulation_asservissement https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764425721

2) Mise en place d’un correcteur P (Proportionnel)

Manipulations :

* Activer le correcteur proportionnel : t = I\, - € * Fixer une consigne (ex : 1500 tr/min) * Le
programme convertit automatiqguement en ticks/s * Freiner légérement le moteur avec le doigt *
Augmenter progressivementK p:0.2-0.5-1.0- 2.0

Observations attendues :

* Le moteur augmente la PWM pour compenser la perturbation * La vitesse remonte partiellement * II
reste un écart statique : vitesse réelle < consigne * Si K p devient trop grand : oscillations,
vibrations, instabilité

Conclusion : Le correcteur P réduit I'erreur, mais ne la supprime pas

3) Mise en place du correcteur | (Intégral)

Manipulations :

* Ajouter le terme intégral : u = K e:+; Iy /f (t)dt * Débuter avec K | = 0.05, puis 0.1 max *

Freiner I'axe puis relacher
Observations attendues :

* L'erreur statique disparait * La vitesse atteint précisément la consigne * Si K_| trop fort :
dépassement, oscillations lentes, instabilité

Conclusion : Le correcteur | supprime I'erreur statique, mais ne doit jamais étre trop fort

4) Mise en place du correcteur D (Dérivé)

Manipulations :

. . e
* Ajouter le terme dérivé : u = I e: 41 f f: dt; +: K Dy * Tester avec K D = 0.01, puis 0.05 *
{

Freiner I'axe pour observer la réaction
Observations attendues :
* Le systeme est mieux amorti * Le dépassement diminue * La stabilité augmente

Attention : Si K_D trop élevé - bruit, vibrations, instabilité

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 13:53



2026/02/18 13:53 3/6 REGULATION ET ASSERVISSEMENT

Conclusion : Le terme D stabilise le systeme, mais n’améliore pas la précision

Synthese des roles P /1/D

Correcteur Role principal Risques si trop fort

P réduit I'erreur oscillations

I supprime I'erreur statique dépassement, instabilité
D amortit, stabilise amplification du bruit

Code Arduino du TP (consigne en tr/min, PID en ticks/s)

// === TP : PID régulation vitesse moteur CC ===
// Consigne entrée en tours/minute (tr/min)

// Le programme convertit en ticks/s pour le PID
// Mesure du codeur sur interruption

// --- Parametres codeur ---
const int TICKS PAR TOUR = 20; // a adapter selon votre codeur

// --- Pont en
const int M AV
const int M AR

T

3; // PWM forward
6; // PWM reverse

// --- Codeur incrémental ---
const int canalA = 2; // interruption 0
const int canalB = 11;

volatile long ticks = 0; // compteur modifié par ISR

// === PID ===

float consigne = 0; // consigne en ticks/s
float kp = 0.8;

float ki 0.1;

float kd = 0.05;

float erreur, erreurPrec = 0;
float integral = 0;

// === Période mesure ===
unsigned long lastMeasure = 0;
const unsigned long period = 100; // 100 ms

// === Conversion tr/min -> ticks/s ===
float trMinToTicksSec(float rpm) {

return (rpm * TICKS PAR TOUR) / 60.0;
}

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/



Last
update:
2025/11/29
14:15

ssi_elec_regulation_asservissement https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764425721

// === Prototypes ===

void ISR codeur();

void commandeMoteur(float pwm);
float lireConsigne();

void setup() {
Serial.begin(9600);

pinMode (M AV, OUTPUT);
pinMode (M_AR, OUTPUT);

pinMode(canalB, INPUT);
attachInterrupt(digitalPinToInterrupt(canalA), ISR codeur, RISING);

Serial.println("=== TP : Regulation PID de vitesse ===");
Serial.println("Entrez une consigne en tr/min (ex : 1500):");

// LOOP
void loop() A

// --- Lecture consigne en tr/min ---
if (Serial.available() > 0) {
float rpm = lireConsigne();
consigne = trMinToTicksSec(rpm);

Serial.print("Consigne = ");
Serial.print(rpm);
Serial.print(" tr/min -> ");
Serial.print(consigne);
Serial.println(" ticks/s");

}

// --- PID toutes les 100 ms ---

unsigned long now = millis();

if (now - lastMeasure >= period) {
lastMeasure = now;

long ticksMesures = ticks;
ticks = 0;

float vitesse = ticksMesures * (1000.0 / period); // ticks/s

erreur = consigne - vitesse;
integral += erreur * (period / 1000.0);

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 13:53



2026/02/18 13:53 5/6 REGULATION ET ASSERVISSEMENT

float deriv = (erreur - erreurPrec) / (period / 1000.0);
erreurPrec = erreur;

float commande = kp * erreur + ki * integral + kd * deriv;
// Saturation

if (commande > 255) commande = 255;

if (commande < -255) commande = -255;

commandeMoteur (commande) ;

// Affichage

Serial.print("Consigne ticks/s = ");
Serial.print(consigne);
Serial.print(" | Vitesse = ");

Serial.print(vitesse);
Serial.print(" | PWM = ");
Serial.println(commande);

// === INTERRUPTIONS CODEUR ===
void ISR codeur() {
if (digitalRead(canalB))

ticks++;
else
ticks--;
}
// === COMMANDE MOTEUR ===

void commandeMoteur(float pwm) {
if (pwm >= 0) {
digitalWrite(M AR, LOW);
analogWrite(M AV, pwm);
} else {
digitalWrite(M AV, LOW);
analogWrite(M AR, -pwm);
}
}

// === LECTURE CONSIGNE ===

float lireConsigne() {
String txt = Serial.readStringUntil(‘'\n'");
txt.trim();
return txt.toFloat();

}

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/



Last

gggg;i/zg ssi_elec_regulation_asservissement https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764425721

14:15

From:
https://mistert.freeboxos.fr/dokuwiki/ - Wiki de Sébastien TACK

Permanent link:
https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764425721

Last update: 2025/11/29 14:15

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 13:53


https://mistert.freeboxos.fr/dokuwiki/
https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764425721

	[REGULATION ET ASSERVISSEMENT]
	REGULATION ET ASSERVISSEMENT
	COURS
	TP – Régulation de vitesse d’un moteur à courant continu avec PID
	Objectifs du TP
	Travail demandé
	1) Commande du moteur en boucle ouverte
	2) Mise en place d’un correcteur P (Proportionnel)
	3) Mise en place du correcteur I (Intégral)
	4) Mise en place du correcteur D (Dérivé)
	Synthèse des rôles P / I / D

	Code Arduino du TP (consigne en tr/min, PID en ticks/s)



