
2026/02/18 13:54 1/5 REGULATION ET ASSERVISSEMENT

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

REGULATION ET ASSERVISSEMENT

COURS

TSSI cours asservissement.pdf

TP – Régulation de vitesse d’un moteur à courant continu avec PID

Objectifs du TP

* Mesurer la vitesse d’un moteur CC avec un codeur incrémental * Comprendre la différence entre
boucle ouverte et boucle fermée * Mettre en œuvre progressivement un correcteur P, puis PI, puis PID
* Observer l’erreur statique, le dépassement et la sensibilité au bruit

Travail demandé

* Décrire la réponse du moteur en boucle ouverte * Tracer ou décrire la courbe vitesse / consigne
pour P * Expliquer pourquoi un écart statique persiste * Montrer comment I supprime cet écart *
Comparer les dépassements pour P, PI et PID * Conclure sur l’intérêt des trois termes du PID

1) Commande du moteur en boucle ouverte

Manipulations :

* Envoyer une commande PWM fixe (ex : 50 %, puis 80 %) * Observer la vitesse indiquée par le
programme * Bloquer légèrement l’axe du moteur avec le doigt

Observations attendues :

* La vitesse chute immédiatement lorsque l’axe est freiné * Le moteur ne corrige pas cette chute :
c’est normal en boucle ouverte * La vitesse dépend de la charge, des frottements et de la tension

Conclusion : La boucle ouverte ne permet pas de maintenir une vitesse constante

2) Mise en place d’un correcteur P (Proportionnel)

Manipulations :

* Activer le correcteur proportionnel : * Fixer une consigne (ex : 1500 tr/min) * Le

https://mistert.freeboxos.fr/dokuwiki/lib/exe/fetch.php?tok=80b64e&media=https%3A%2F%2Fmistert.freeboxos.fr%2Fcours%2F_%2F_herbin%2FTSI-2022%2Fr%C3%A9gulation%20-%20asservissement%2FTSSI%20cours%20%20asservissement.pdf

Last
update:
2025/11/29
14:14

ssi_elec_regulation_asservissement https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764425686

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 13:54

programme convertit automatiquement en ticks/s * Freiner légèrement le moteur avec le doigt *
Augmenter progressivement K_p : 0.2 → 0.5 → 1.0 → 2.0

Observations attendues :

* Le moteur augmente la PWM pour compenser la perturbation * La vitesse remonte partiellement * Il
reste un écart statique : * Si K_p devient trop grand : oscillations,
vibrations, instabilité

Conclusion : Le correcteur P réduit l’erreur, mais ne la supprime pas

3) Mise en place du correcteur I (Intégral)

Manipulations :

* Ajouter le terme intégral : * Débuter avec K_I = 0.05, puis 0.1 max *

Freiner l’axe puis relâcher

Observations attendues :

* L’erreur statique disparaît * La vitesse atteint précisément la consigne * Si K_I trop fort :
dépassement, oscillations lentes, instabilité

Conclusion : Le correcteur I supprime l’erreur statique, mais ne doit jamais être trop fort

4) Mise en place du correcteur D (Dérivé)

Manipulations :

* Ajouter le terme dérivé : * Tester avec K_D = 0.01, puis 0.05 *

Freiner l’axe pour observer la réaction

Observations attendues :

* Le système est mieux amorti * Le dépassement diminue * La stabilité augmente

Attention : Si K_D trop élevé → bruit, vibrations, instabilité

Conclusion : Le terme D stabilise le système, mais n’améliore pas la précision

2026/02/18 13:54 3/5 REGULATION ET ASSERVISSEMENT

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

Synthèse des rôles P / I / D

Correcteur Rôle principal Risques si trop fort
P réduit l’erreur oscillations
I supprime l’erreur statique dépassement, instabilité
D amortit, stabilise amplification du bruit

Code Arduino du TP (consigne en tr/min, PID en ticks/s)

// === TP : PID régulation vitesse moteur CC ===
// Consigne entrée en tours/minute (tr/min)
// Le programme convertit en ticks/s pour le PID
// Mesure du codeur sur interruption

// --- Paramètres codeur ---
const int TICKS_PAR_TOUR = 20; // à adapter selon votre codeur

// --- Pont en H ---
const int M_AV = 3; // PWM forward
const int M_AR = 6; // PWM reverse

// --- Codeur incrémental ---
const int canalA = 2; // interruption 0
const int canalB = 11;

volatile long ticks = 0; // compteur modifié par ISR

// === PID ===
float consigne = 0; // consigne en ticks/s
float kp = 0.8;
float ki = 0.1;
float kd = 0.05;

float erreur, erreurPrec = 0;
float integral = 0;

// === Période mesure ===
unsigned long lastMeasure = 0;
const unsigned long period = 100; // 100 ms

// === Conversion tr/min -> ticks/s ===
float trMinToTicksSec(float rpm) {
 return (rpm * TICKS_PAR_TOUR) / 60.0;
}

// === Prototypes ===
void ISR_codeur();
void commandeMoteur(float pwm);
float lireConsigne();

Last
update:
2025/11/29
14:14

ssi_elec_regulation_asservissement https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764425686

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 13:54

void setup() {
 Serial.begin(9600);

 pinMode(M_AV, OUTPUT);
 pinMode(M_AR, OUTPUT);

 pinMode(canalB, INPUT);

 attachInterrupt(digitalPinToInterrupt(canalA), ISR_codeur, RISING);

 Serial.println("=== TP : Regulation PID de vitesse ===");
 Serial.println("Entrez une consigne en tr/min (ex : 1500):");
}

// ====================== LOOP ===========================
void loop() {

 // --- Lecture consigne en tr/min ---
 if (Serial.available() > 0) {
 float rpm = lireConsigne();
 consigne = trMinToTicksSec(rpm);

 Serial.print("Consigne = ");
 Serial.print(rpm);
 Serial.print(" tr/min -> ");
 Serial.print(consigne);
 Serial.println(" ticks/s");
 }

 // --- PID toutes les 100 ms ---
 unsigned long now = millis();
 if (now - lastMeasure >= period) {
 lastMeasure = now;

 long ticksMesures = ticks;
 ticks = 0;

 float vitesse = ticksMesures * (1000.0 / period); // ticks/s

 // === PID ===
 erreur = consigne - vitesse;
 integral += erreur * (period / 1000.0);
 float deriv = (erreur - erreurPrec) / (period / 1000.0);
 erreurPrec = erreur;

 float commande = kp * erreur + ki * integral + kd * deriv;

 // Saturation

2026/02/18 13:54 5/5 REGULATION ET ASSERVISSEMENT

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

 if (commande > 255) commande = 255;
 if (commande < -255) commande = -255;

 commandeMoteur(commande);

 // Affichage
 Serial.print("Consigne ticks/s = ");
 Serial.print(consigne);
 Serial.print(" | Vitesse = ");
 Serial.print(vitesse);
 Serial.print(" | PWM = ");
 Serial.println(commande);
 }
}

// === INTERRUPTIONS CODEUR ===
void ISR_codeur() {
 if (digitalRead(canalB))
 ticks++;
 else
 ticks--;
}

// === COMMANDE MOTEUR ===
void commandeMoteur(float pwm) {
 if (pwm >= 0) {
 digitalWrite(M_AR, LOW);
 analogWrite(M_AV, pwm);
 } else {
 digitalWrite(M_AV, LOW);
 analogWrite(M_AR, -pwm);
 }
}

// === LECTURE CONSIGNE ===
float lireConsigne() {
 String txt = Serial.readStringUntil('\n');
 txt.trim();
 return txt.toFloat();
}

From:
https://mistert.freeboxos.fr/dokuwiki/ - Wiki de Sébastien TACK

Permanent link:
https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764425686

Last update: 2025/11/29 14:14

https://mistert.freeboxos.fr/dokuwiki/
https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764425686

	[REGULATION ET ASSERVISSEMENT]
	REGULATION ET ASSERVISSEMENT
	COURS
	TP – Régulation de vitesse d’un moteur à courant continu avec PID
	Objectifs du TP
	Travail demandé
	1) Commande du moteur en boucle ouverte
	2) Mise en place d’un correcteur P (Proportionnel)
	3) Mise en place du correcteur I (Intégral)
	4) Mise en place du correcteur D (Dérivé)
	Synthèse des rôles P / I / D

	Code Arduino du TP (consigne en tr/min, PID en ticks/s)

