2026/02/18 15:13 1/5 REGULATION ET ASSERVISSEMENT

REGULATION ET ASSERVISSEMENT

COURS

TSSI cours asservissement.pdf

TP - Régulation de vitesse d’'un moteur a courant continu avec PID
Objectifs du TP

* Mesurer la vitesse d'un moteur CC avec un codeur incrémental * Comprendre la différence entre
boucle ouverte et boucle fermée * Mettre en ceuvre progressivement un correcteur P, puis PI, puis PID
* Observer I'erreur statique, le dépassement et la sensibilité au bruit

Travail demandé

* Décrire la réponse du moteur en boucle ouverte * Tracer ou décrire la courbe vitesse / consigne
pour P * Expliquer pourquoi un écart statique persiste * Montrer comment | supprime cet écart *
Comparer les dépassements pour P, Pl et PID * Conclure sur I'intérét des trois termes du PID

1) Commande du moteur en boucle ouverte

Manipulations :

* Envoyer une commande PWM fixe (ex : 50 %, puis 80 %) * Observer la vitesse indiquée par le
programme * Bloquer légerement I'axe du moteur avec le doigt

Observations attendues :

* La vitesse chute immédiatement lorsque I'axe est freiné * Le moteur ne corrige pas cette chute :
c'est normal en boucle ouverte * La vitesse dépend de la charge, des frottements et de la tension

Conclusion : La boucle ouverte ne permet pas de maintenir une vitesse constante

2) Mise en place d’un correcteur P (Proportionnel)

Manipulations :

* Activer le correcteur proportionnel : t = I, - € * Fixer une consigne (ex : 200 ticks/s) * Freiner

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

https://mistert.freeboxos.fr/dokuwiki/lib/exe/fetch.php?tok=80b64e&media=https%3A%2F%2Fmistert.freeboxos.fr%2Fcours%2F_%2F_herbin%2FTSI-2022%2Fr%C3%A9gulation%20-%20asservissement%2FTSSI%20cours%20%20asservissement.pdf

Last
update:
2025/11/29
14:09

ssi_elec_regulation_asservissement https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764425350

|égerement le moteur avec le doigt * Augmenter progressivementK p: 0.2 - 0.5 - 1.0 - 2.0
Observations attendues :

* Le moteur augmente la PWM pour compenser la perturbation * La vitesse remonte partiellement * 1|
reste un écart statique : vitesse reéelle < consigne * Si K p devient trop grand : oscillations,
vibrations, instabilité

Conclusion : Le correcteur P réduit I'erreur, mais ne la supprime pas

3) Mise en place du correcteur | (Intégral)

Manipulations :

* Ajouter le terme intégral : u = A e; 4+ K [i (t),dt * Débuter avec K_| = 0.05, puis 0.1 max *

Freiner I'axe puis relacher
Observations attendues :

* |'erreur statique disparait * La vitesse atteint précisément la consigne * Si K_| trop fort :
dépassement, oscillations lentes, instabilité

Conclusion : Le correcteur | supprime I'erreur statique, mais ne doit jamais étre trop fort

4) Mise en place du correcteur D (Dérivé)

Manipulations :

il

* Ajouter le terme dérivé : u = I e; 4+ K /.t’ L dt; +; H”E * Tester avec K_D = 0.01, puis 0.05 *
. i

Freiner I’axe pour observer la réaction

Observations attendues :

* Le systéme est mieux amorti * Le dépassement diminue * La stabilité augmente
Attention : Si K_D trop élevé - bruit, vibrations, instabilité

Conclusion : Le terme D stabilise le systeme, mais n'améliore pas la précision

Synthese des roles P /1 /D

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 15:13

2026/02/18 15:13 3/5 REGULATION ET ASSERVISSEMENT

Correcteur Role principal Risques si trop fort

P réduit I'erreur oscillations

I supprime I'erreur statique dépassement, instabilité
D amortit, stabilise amplification du bruit

Code Arduino du TP

// === TP : PID pour régulation de VITESSE d’un moteur CC ===
// Mesure vitesse = codeur incrémental sur interruption
// Consigne recue par le Moniteur Série (en tr/min ou en ticks/s)

3; // PWM forward
6; // PWM reverse

// --- Pont en
const int M AV
const int M AR

a5

// --- Codeur incrémental ---
const int canalA = 2; // interruption 0
const int canalB 11;

volatile long ticks = 0; // compteur modifié par ISR

// === PID ===

float consigne = 0; // vitesse ciblée (ex : en ticks/s)
float kp = 0.8; // gains PID : a régler en TP
float ki = 0.1;

float kd = 0.05;

float erreur, erreurPrec = 0;
float integral = 0;

// === Mesure période ===
unsigned long lastMeasure = 0;
const unsigned long period = 100; // calcul vitesse toutes les 100 ms

// === Prototypes ===
void ISR codeur();

void commandeMoteur(float pwm);
float lireConsigne();

void setup() {
Serial.begin(9600);

pinMode(M AV, OUTPUT);
pinMode (M AR, OUTPUT);

pinMode(canalB, INPUT);

attachInterrupt(digitalPinToInterrupt(canalA), ISR codeur, RISING);

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

Last
update:
2025/11/29
14:09

ssi_elec_regulation_asservissement https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764425350

Serial.println("=== TP : Regulation PID de vitesse ===");
Serial.println("Entrez une consigne en ticks/s (ex : 200):");

}

// BOUCLE PRINCIPALE
void loop() {
// --- Lecture consigne si disponible ---
if (Serial.available() > 0) {
consigne = lireConsigne();
Serial.print("Nouvelle consigne = ");
Serial.println(consigne);

}

// --- Boucle PID toutes les 100 ms ---

unsigned long now = millis();

if (now - lastMeasure >= period) {
lastMeasure = now;

long ticksMesures = ticks; // copie atomique
ticks = 0; // RAZ pour prochaine fenétre

float vitesse = ticksMesures * (1000.0 / period); // en ticks/s

// PID
erreur = consigne - vitesse;

integral += erreur * (period / 1000.0);

float deriv = (erreur - erreurPrec) / (period / 1000.0);
erreurPrec = erreur;

float commande = kp * erreur + ki * integral + kd * deriv;

// Limiter entre -255 et 255
if (commande > 255) commande = 255;
if (commande < -255) commande = -255;

commandeMoteur (commande) ;

// --- Affichage TP ---
Serial.print("Consigne=");
Serial.print(consigne);
Serial.print(" | Vitesse=");
Serial.print(vitesse);
Serial.print(" | PWM=");
Serial.println(commande);

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 15:13

2026/02/18 15:13 5/5 REGULATION ET ASSERVISSEMENT

// ========== INTERRUPTIONS CODEEUR ==========
void ISR codeur() {
if (digitalRead(canalB))

ticks++;
else
ticks--;
}

void commandeMoteur(float pwm) {
if (pwm >= 0) {
digitalWrite(M AR, LOW);
analogWrite(M AV, pwm);
} else {
digitalWrite(M AV, LOW);
analogWrite(M AR, -pwm);

// ========== LECTURE CONSIGNE ==========
float lireConsigne() {
String txt = Serial.readStringUntil(‘'\n');
txt.trim();
return txt.toFloat();

}

From:
https://mistert.freeboxos.fr/dokuwiki/ - Wiki de Sébastien TACK

Permanent link:
https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764425350 -

Last update: 2025/11/29 14:09

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

https://mistert.freeboxos.fr/dokuwiki/
https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764425350

	[REGULATION ET ASSERVISSEMENT]
	REGULATION ET ASSERVISSEMENT
	COURS
	TP – Régulation de vitesse d’un moteur à courant continu avec PID
	Objectifs du TP
	Travail demandé
	1) Commande du moteur en boucle ouverte
	2) Mise en place d’un correcteur P (Proportionnel)
	3) Mise en place du correcteur I (Intégral)
	4) Mise en place du correcteur D (Dérivé)
	Synthèse des rôles P / I / D

	Code Arduino du TP

