
2026/02/18 13:53 1/2 REGULATION ET ASSERVISSEMENT

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

===== REGULATION ET ASSERVISSEMENT ===== ==== COURS ====
{{https://mistert.freeboxos.fr/cours/_/_herbin/TSI-2022/régulation - asservissement/TSSI cours
asservissement.pdf}} ---- ==== TP – Régulation de vitesse d’un moteur à courant continu avec PID
==== === Objectifs du TP === * Mesurer la vitesse d’un moteur CC avec un codeur incrémental *
Comprendre la différence entre boucle ouverte et boucle fermée * Mettre en œuvre progressivement
un correcteur P, puis PI, puis PID * Observer l’erreur statique, le dépassement et la sensibilité au bruit
---- === Travail demandé === * Décrire la réponse du moteur en boucle ouverte * Tracer ou décrire
la courbe vitesse / consigne pour P * Expliquer pourquoi un écart statique persiste * Montrer comment
I supprime cet écart * Comparer les dépassements pour P, PI et PID * Conclure sur l’intérêt des trois
termes du PID ---- === 1) Commande du moteur en boucle ouverte === Manipulations : * Envoyer
une commande PWM fixe (ex : 50 %, puis 80 %) * Observer la vitesse indiquée par le programme *
Bloquer légèrement l’axe du moteur avec le doigt Observations attendues : * La vitesse chute
immédiatement lorsque l’axe est freiné * Le moteur ne corrige pas cette chute : c’est normal en
boucle ouverte * La vitesse dépend de la charge, des frottements et de la tension Conclusion : La
boucle ouverte ne permet pas de maintenir une vitesse constante ---- === 2) Mise en place d’un
correcteur P (Proportionnel) === Manipulations : * Activer le correcteur proportionnel : <mt>u = K_p
\cdot e</mt> * Fixer une consigne (ex : 200 ticks/s) * Freiner légèrement le moteur avec le doigt *
Augmenter progressivement K_p : 0.2 → 0.5 → 1.0 → 2.0 Observations attendues : * Le moteur
augmente la PWM pour compenser la perturbation * La vitesse remonte partiellement * Il reste un
écart statique : <mt>\text{vitesse réelle} < \text{consigne}</mt> * Si K_p devient trop grand :
oscillations, vibrations, instabilité Conclusion : Le correcteur P réduit l’erreur, mais ne la supprime pas
---- === 3) Mise en place du correcteur I (Intégral) === Manipulations : * Ajouter le terme intégral :
<mt>u = K_p e ;+; K_I \int e(t),dt</mt> * Débuter avec K_I = 0.05, puis 0.1 max * Freiner l’axe puis
relâcher Observations attendues : * L’erreur statique disparaît * La vitesse atteint précisément la
consigne * Si K_I trop fort : dépassement, oscillations lentes, instabilité Conclusion : Le correcteur I
supprime l’erreur statique, mais ne doit jamais être trop fort ---- === 4) Mise en place du correcteur
D (Dérivé) === Manipulations : * Ajouter le terme dérivé : <mt>u = K_p e ;+; K_I \int e,dt ;+; K_D
\frac{de}{dt}</mt> * Tester avec K_D = 0.01, puis 0.05 * Freiner l’axe pour observer la réaction
Observations attendues : * Le système est mieux amorti * Le dépassement diminue * La stabilité
augmente Attention : Si K_D trop élevé → bruit, vibrations, instabilité Conclusion : Le terme D stabilise
le système, mais n’améliore pas la précision ---- === Synthèse des rôles P / I / D === ^ Correcteur ^
Rôle principal ^ Risques si trop fort ^ | P | réduit l’erreur | oscillations | | I | supprime l’erreur statique
| dépassement, instabilité | | D | amortit, stabilise | amplification du bruit | ---- ==== Code Arduino du
TP ==== <code> // === TP : PID pour régulation de VITESSE d’un moteur CC === // Mesure vitesse
= codeur incrémental sur interruption // Consigne reçue par le Moniteur Série (en tr/min ou en ticks/s)
// --- Pont en H --- const int M_AV = 3; // PWM forward const int M_AR = 6; // PWM reverse // --- Codeur
incrémental --- const int canalA = 2; // interruption 0 const int canalB = 11; volatile long ticks = 0; //
compteur modifié par ISR // === PID === float consigne = 0; // vitesse ciblée (ex : en ticks/s) float kp
= 0.8; // gains PID : à régler en TP float ki = 0.1; float kd = 0.05; float erreur, erreurPrec = 0; float
integral = 0; // === Mesure période === unsigned long lastMeasure = 0; const unsigned long period
= 100; // calcul vitesse toutes les 100 ms // === Prototypes === void ISR_codeur(); void
commandeMoteur(float pwm); float lireConsigne(); void setup() { Serial.begin(9600); pinMode(M_AV,
OUTPUT); pinMode(M_AR, OUTPUT); pinMode(canalB, INPUT);
attachInterrupt(digitalPinToInterrupt(canalA), ISR_codeur, RISING); Serial.println("=== TP : Regulation
PID de vitesse ==="); Serial.println("Entrez une consigne en ticks/s (ex : 200):"); } //
====================== BOUCLE PRINCIPALE
=========================== void loop() { // --- Lecture consigne si disponible --- if
(Serial.available() > 0) { consigne = lireConsigne(); Serial.print("Nouvelle consigne = ");
Serial.println(consigne); } // --- Boucle PID toutes les 100 ms --- unsigned long now = millis(); if (now -
lastMeasure >= period) { lastMeasure = now; long ticksMesures = ticks; // copie atomique ticks = 0;
// RAZ pour prochaine fenêtre float vitesse = ticksMesures * (1000.0 / period); // en ticks/s //

Last
update:
2025/11/29
14:08

ssi_elec_regulation_asservissement https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764425327

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 13:53

================= PID ================= erreur = consigne - vitesse; integral +=
erreur * (period / 1000.0); float deriv = (erreur - erreurPrec) / (period / 1000.0); erreurPrec = erreur;
float commande = kp * erreur + ki * integral + kd * deriv; // Limiter entre -255 et 255 if (commande >
255) commande = 255; if (commande < -255) commande = -255; commandeMoteur(commande); // --
- Affichage TP --- Serial.print("Consigne="); Serial.print(consigne); Serial.print(" | Vitesse=");
Serial.print(vitesse); Serial.print(" | PWM="); Serial.println(commande); } } // ==========
INTERRUPTIONS CODEEUR ========== void ISR_codeur() { if (digitalRead(canalB)) ticks++; else
ticks--; } // ========== COMMANDE MOTEUR ========== void commandeMoteur(float pwm)
{ if (pwm >= 0) { digitalWrite(M_AR, LOW); analogWrite(M_AV, pwm); } else { digitalWrite(M_AV,
LOW); analogWrite(M_AR, -pwm); } } // ========== LECTURE CONSIGNE ========== float
lireConsigne() { String txt = Serial.readStringUntil('\n'); txt.trim(); return txt.toFloat(); } </code>

From:
https://mistert.freeboxos.fr/dokuwiki/ - Wiki de Sébastien TACK

Permanent link:
https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764425327

Last update: 2025/11/29 14:08

https://mistert.freeboxos.fr/dokuwiki/
https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764425327

