2026/02/18 13:54 1/5 REGULATION ET ASSERVISSEMENT

REGULATION ET ASSERVISSEMENT

COURS

TSSI cours asservissement.pdf

TP - Régulation de vitesse d’un moteur a courant continu avec PID
Objectifs du TP

- Mesurer la vitesse d'un moteur CC avec un codeur incrémental. - Comprendre la différence entre
boucle ouverte et boucle fermée. - Mettre en ceuvre progressivement un correcteur P, puis PI, puis
PID. - Observer I'erreur statique, le dépassement et la sensibilité au bruit.

Travail demandé

- Décrire la réponse du moteur en boucle ouverte. - Tracer ou décrire la courbe vitesse / consigne
pour P. - Expliquer pourquoi un écart statique persiste. - Montrer comment | supprime cet écart. -
Comparer les dépassements pour P, Pl et PID. - Conclure sur I'intérét des trois termes du PID.

1) Commande du moteur en boucle ouverte
Manipulations : - Envoyer une commande PWM fixe (ex : 50 %, puis 80 %). - Observer la vitesse

indiquée par le programme. - Bloquer Iégérement I'axe du moteur avec le doigt (sans forcer).

Observations attendues : - La vitesse chute immédiatement lorsque I'axe est freiné. - Le moteur ne
corrige pas cette chute : c'est normal en boucle ouverte. - La vitesse dépend de la charge, des
frottements et de la tension.

Conclusion : La boucle ouverte ne permet pas de maintenir une vitesse constante.
2) Mise en place d’un correcteur P (Proportionnel)

Manipulations : - Activer le correcteur proportionnel : i = n’f,, £ - Fixer une consigne (ex : 200
ticks/s). - Freiner [égerement le moteur avec le doigt. - Augmenter progressivement Kp : 0.2 - 0.5 -»
1.0 - 2.0.

Observations attendues : - Le moteur augmente la PWM pour compenser la perturbation. - La vitesse
remonte partiellement. - Il reste un écart statique : vitesse réelle < consigne - Si Kp devient trop
grand : oscillations, vibrations, instabilité.

Conclusion : Le correcteur P réduit I'erreur, mais ne la supprime pas.

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/


https://mistert.freeboxos.fr/dokuwiki/lib/exe/fetch.php?tok=547a22&media=https%3A%2F%2Fmistert.freeboxos.fr%2Fcours%2F_%2F_herbin%2FTSI-2022%2Fr%C3%A9gulation%0A%20-%20asservissement%2FTSSI%20cours%20asservissement.pdf

Last
update:
2025/11/29
14:01

ssi_elec_regulation_asservissement https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764424913

3) Mise en place du correcteur | (Intégral)

Manipulations : - Ajouter le terme intégral : u = A e; +: K [..r (t),dt - Débuter avec Ki = 0.05,

puis 0.1 max. - Freiner I'axe puis relacher.

Observations attendues : - L'erreur statique disparait. - La vitesse atteint précisément la consigne. -
Si Ki trop fort : dépassement, oscillations lentes, instabilité.

Conclusion : Le correcteur | supprime I'erreur statique, mais ne doit jamais étre trop fort.

4) Mise en place du correcteur D (Dérivé)

il

Manipulations : - Ajouter le terme dérivé : u = I e: +: I\ /E ,dt: +: fl-;;F - Tester avec Kd =
. f

0.01, puis 0.05. - Freiner I'axe pour observer la réaction.

Observations attendues : - Le systeme est mieux amorti. - Le dépassement diminue. - La stabilité
augmente.

Attention : - Si Kd trop élevé - bruit, vibrations, instabilité.

Conclusion : Le terme D stabilise le systeme, mais n'améliore pas la précision.

Synthese des rolesP/1/D

Correcteur Role principal Risques si trop fort

P réduit I'erreur oscillations

I supprime I'erreur statique dépassement, instabilité
D amortit, stabilise amplification du bruit

Code Arduino du TP

// === TP : PID pour régulation de VITESSE d’un moteur CC === // Mesure
vitesse = codeur incrémental sur interruption // Consigne recue par le
Moniteur Série (en tr/min ou en ticks/s)

// --- Pont en H ---
const int M_AV = 3; // PWM forward
const int M AR = 6; // PWM reverse

// --- Codeur incrémental ---
const int canalA = 2; // interruption 0
const int canalB = 11;

volatile long ticks = 0; // compteur modifié par ISR

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 13:54



2026/02/18 13:54 3/5 REGULATION ET ASSERVISSEMENT

// === PID ===
float consigne = 0; // vitesse ciblée (ex : en ticks/s)
float kp = 0.8; // gains PID : a régler en TP

float ki = 0.1;

float kd = 0.05;

float erreur, erreurPrec = 0;
float integral = 0;

// === Mesure période ===
unsigned long lastMeasure = 0;
const unsigned long period = 100; // calcul vitesse toutes les 100 ms

// === Prototypes ===

void ISR codeur();

void commandeMoteur(float pwm);
float lireConsigne();

void setup() {
Serial.begin(9600);

pinMode(M AV, OUTPUT);
pinMode(M AR, OUTPUT);

pinMode(canalB, INPUT);
attachInterrupt(digitalPinToInterrupt(canalA), ISR codeur, RISING);
Serial.println("=== TP : Regulation PID de vitesse ===");

Serial.println("Entrez une consigne en ticks/s (ex : 200):");

}

// BOUCLE PRINCIPALE
void loop() A
// --- Lecture consigne si disponible ---

if (Serial.available() > 0) {
consigne = lireConsigne();
Serial.print("Nouvelle consigne = ");
Serial.println(consigne);

}

// --- Boucle PID toutes les 100 ms ---
unsigned long now = millis();

if (now - lastMeasure >= period) {
lastMeasure = now;

long ticksMesures = ticks; // copie atomique
ticks = 0; // RAZ pour prochaine fenétre

float vitesse = ticksMesures * (1000.0 / period); // en ticks/s

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/



Last
update:
2025/11/29
14:01

// PID
erreur = consigne - vitesse;

integral += erreur * (period / 1000.0);

float deriv = (erreur - erreurPrec) / (period / 1000.0);
erreurPrec = erreur;

ssi_elec_regulation_asservissement https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764424913

float commande = kp * erreur + ki * integral + kd * deriv;

// Limiter entre -255 et 255
if (commande > 255) commande = 255;
if (commande < -255) commande = -255;

commandeMoteur (commande) ;
// --- Affichage TP ---

Serial.print("Consigne=");
Serial.print(consigne);

Serial.print(" | Vitesse=");
Serial.print(vitesse);
Serial.print(" | PWM=");

Serial.println(commande);

// ========== INTERRUPTIONS CODEUR ==========
void ISR codeur() {

if (digitalRead(canalB))

ticks++;

else

ticks--;

// ========== (COMMANDE MOTEUR ==========
void commandeMoteur(float pwm) {

if (pwm >= 0) {

digitalWrite(M AR, LOW);
analogWrite(M AV, pwm);

} else {

digitalWrite(M AV, LOW);
analogWrite(M AR, -pwm);

// ========== LECTURE CONSIGNE ==========
float lireConsigne() {

String txt = Serial.readStringUntil('\n"');
txt.trim();

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 13:54



2026/02/18 13:54 5/5 REGULATION ET ASSERVISSEMENT

return txt.toFloat();
}

From:
https://mistert.freeboxos.fr/dokuwiki/ - Wiki de Sébastien TACK

Permanent link:
https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764424913

Last update: 2025/11/29 14:01

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/


https://mistert.freeboxos.fr/dokuwiki/
https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764424913

	[REGULATION ET ASSERVISSEMENT]
	REGULATION ET ASSERVISSEMENT
	COURS
	TP – Régulation de vitesse d’un moteur à courant continu avec PID
	Objectifs du TP
	Travail demandé
	1) Commande du moteur en boucle ouverte
	2) Mise en place d’un correcteur P (Proportionnel)
	3) Mise en place du correcteur I (Intégral)
	4) Mise en place du correcteur D (Dérivé)
	Synthèse des rôles P / I / D

	Code Arduino du TP



