
2026/02/18 13:54 1/9 REGULATION ET ASSERVISSEMENT

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

REGULATION ET ASSERVISSEMENT

COURS

TSSI cours asservissement.pdf

TP – Régulation de vitesse d’un moteur à courant continu avec PID

Objectifs du TP

– Mesurer la vitesse d’un moteur CC avec un codeur incrémental. – Comprendre la différence entre
boucle ouverte et boucle fermée. – Mettre en œuvre progressivement un correcteur P, puis PI, puis
PID. – Observer l’erreur statique, le dépassement et la sensibilité au bruit.

Travail demandé

– Décrire la réponse du moteur en boucle ouverte. – Tracer ou décrire la courbe vitesse / consigne
pour P. – Expliquer pourquoi un écart statique persiste. – Montrer comment I supprime cet écart. –
Comparer les dépassements pour P, PI et PID. – Conclure sur l’intérêt des trois termes du PID.

1) Commande du moteur en boucle ouverte

Manipulations : – Envoyer une commande PWM fixe (ex : 50 %, puis 80 %). – Observer la vitesse
indiquée par le programme. – Bloquer légèrement l’axe du moteur avec le doigt (sans forcer).

Observations attendues : – La vitesse chute immédiatement lorsque l’axe est freiné. – Le moteur ne
corrige pas cette chute : c’est normal en boucle ouverte. – La vitesse dépend de la charge, des
frottements et de la tension.

Conclusion : La boucle ouverte ne permet pas de maintenir une vitesse constante.

2) Mise en place d’un correcteur P (Proportionnel)

Manipulations : – Activer le correcteur proportionnel : – Fixer une consigne (ex : 200
ticks/s). – Freiner légèrement le moteur avec le doigt. – Augmenter progressivement Kp : 0.2 → 0.5 →
1.0 → 2.0.

Observations attendues : – Le moteur augmente la PWM pour compenser la perturbation. – La vitesse
remonte partiellement. – Il reste un écart statique : – Si Kp devient trop
grand : oscillations, vibrations, instabilité.

Conclusion : Le correcteur P réduit l’erreur, mais ne la supprime pas.

https://mistert.freeboxos.fr/dokuwiki/lib/exe/fetch.php?tok=547a22&media=https%3A%2F%2Fmistert.freeboxos.fr%2Fcours%2F_%2F_herbin%2FTSI-2022%2Fr%C3%A9gulation%0A%20-%20asservissement%2FTSSI%20cours%20asservissement.pdf

Last
update:
2025/11/29
14:01

ssi_elec_regulation_asservissement https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764424874

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 13:54

3) Mise en place du correcteur I (Intégral)

Manipulations : – Ajouter le terme intégral : – Débuter avec Ki = 0.05,

puis 0.1 max. – Freiner l’axe puis relâcher.

Observations attendues : – L’erreur statique disparaît. – La vitesse atteint précisément la consigne. –
Si Ki trop fort : dépassement, oscillations lentes, instabilité.

Conclusion : Le correcteur I supprime l’erreur statique, mais ne doit jamais être trop fort.

4) Mise en place du correcteur D (Dérivé)

Manipulations : – Ajouter le terme dérivé : – Tester avec Kd =

0.01, puis 0.05. – Freiner l’axe pour observer la réaction.

Observations attendues : – Le système est mieux amorti. – Le dépassement diminue. – La stabilité
augmente.

Attention : – Si Kd trop élevé → bruit, vibrations, instabilité.

Conclusion : Le terme D stabilise le système, mais n’améliore pas la précision.

Synthèse des rôles P / I / D

Correcteur Rôle principal Risques si trop fort
P réduit l’erreur oscillations
I supprime l’erreur statique dépassement, instabilité
D amortit, stabilise amplification du bruit

Code Arduino du TP

 // === TP : PID pour régulation de VITESSE d’un moteur CC === // Mesure
vitesse = codeur incrémental sur interruption // Consigne reçue par le
Moniteur Série (en tr/min ou en ticks/s)

// --- Pont en H ---
const int M_AV = 3; // PWM forward
const int M_AR = 6; // PWM reverse

// --- Codeur incrémental ---
const int canalA = 2; // interruption 0
const int canalB = 11;

volatile long ticks = 0; // compteur modifié par ISR

2026/02/18 13:54 3/9 REGULATION ET ASSERVISSEMENT

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

// === PID ===
float consigne = 0; // vitesse ciblée (ex : en ticks/s)
float kp = 0.8; // gains PID : à régler en TP
float ki = 0.1;
float kd = 0.05;

float erreur, erreurPrec = 0;
float integral = 0;

// === Mesure période ===
unsigned long lastMeasure = 0;
const unsigned long period = 100; // calcul vitesse toutes les 100 ms

// === Prototypes ===
void ISR_codeur();
void commandeMoteur(float pwm);
float lireConsigne();

void setup() {
Serial.begin(9600);

pinMode(M_AV, OUTPUT);
pinMode(M_AR, OUTPUT);

pinMode(canalB, INPUT);

attachInterrupt(digitalPinToInterrupt(canalA), ISR_codeur, RISING);

Serial.println("=== TP : Regulation PID de vitesse ===");
Serial.println("Entrez une consigne en ticks/s (ex : 200):");
}

// ====================== BOUCLE PRINCIPALE ===========================
void loop() {
// --- Lecture consigne si disponible ---
if (Serial.available() > 0) {
consigne = lireConsigne();
Serial.print("Nouvelle consigne = ");
Serial.println(consigne);
}

// --- Boucle PID toutes les 100 ms ---
unsigned long now = millis();
if (now - lastMeasure >= period) {
lastMeasure = now;

long ticksMesures = ticks; // copie atomique
ticks = 0; // RAZ pour prochaine fenêtre

float vitesse = ticksMesures * (1000.0 / period); // en ticks/s

Last
update:
2025/11/29
14:01

ssi_elec_regulation_asservissement https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764424874

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 13:54

// ================= PID =================
erreur = consigne - vitesse;
integral += erreur * (period / 1000.0);
float deriv = (erreur - erreurPrec) / (period / 1000.0);
erreurPrec = erreur;

float commande = kp * erreur + ki * integral + kd * deriv;

// Limiter entre -255 et 255
if (commande > 255) commande = 255;
if (commande < -255) commande = -255;

commandeMoteur(commande);

// --- Affichage TP ---
Serial.print("Consigne=");
Serial.print(consigne);
Serial.print(" | Vitesse=");
Serial.print(vitesse);
Serial.print(" | PWM=");
Serial.println(commande);

}
}

// ========== INTERRUPTIONS CODEUR ==========
void ISR_codeur() {
if (digitalRead(canalB))
ticks++;
else
ticks--;
}

// ========== COMMANDE MOTEUR ==========
void commandeMoteur(float pwm) {
if (pwm >= 0) {
digitalWrite(M_AR, LOW);
analogWrite(M_AV, pwm);
} else {
digitalWrite(M_AV, LOW);
analogWrite(M_AR, -pwm);
}
}

// ========== LECTURE CONSIGNE ==========
float lireConsigne() {
String txt = Serial.readStringUntil('\n');
txt.trim();

2026/02/18 13:54 5/9 REGULATION ET ASSERVISSEMENT

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

return txt.toFloat();
}

Si tu veux, je t’ajoute :

� une version imprimable PDF � un schéma fonctionnel de la boucle PID � une activité
complémentaire “réglage Ziegler–Nichols” � un graphe ASCII montrant

Vous avez dit : les lstes en – marchent pas garder * ChatGPT a dit : Réflexion durant 4 secondes

Voici la version corrigée avec les listes en * (et toujours gras + balises

Fixer une consigne (ex : 200 ticks/s).

Last
update:
2025/11/29
14:01

ssi_elec_regulation_asservissement https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764424874

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 13:54

Freiner légèrement le moteur avec le doigt.

Augmenter progressivement K_p : 0.2 → 0.5 → 1.0 → 2.0.

Observations attendues :

Le moteur augmente la PWM pour compenser la perturbation.

La vitesse remonte partiellement.

Il reste un écart statique :

Si K_p devient trop grand : oscillations, vibrations, instabilité.

Conclusion : Le correcteur P réduit l’erreur, mais ne la supprime pas.

3) Mise en place du correcteur I (Intégral)

Manipulations :

Ajouter le terme intégral :

Débuter avec K_I = 0.05, puis 0.1 max.

Freiner l’axe puis relâcher.

Observations attendues :

L’erreur statique disparaît.

La vitesse atteint précisément la consigne.

Si K_I est trop fort : dépassement, oscillations lentes, instabilité.

Conclusion : Le correcteur I supprime l’erreur statique, mais ne doit jamais être trop fort.

4) Mise en place du correcteur D (Dérivé)

Manipulations :

Ajouter le terme dérivé :

Tester avec K_D = 0.01, puis 0.05.

Freiner l’axe pour observer la réaction.

Observations attendues :

2026/02/18 13:54 7/9 REGULATION ET ASSERVISSEMENT

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

Le système est mieux amorti.

Le dépassement diminue.

La stabilité augmente.

Attention :

Si K_D est trop élevé → bruit, vibrations, instabilité.

Conclusion : Le terme D stabilise le système, mais n’améliore pas la précision.

Synthèse des rôles P / I / D

Correcteur Rôle principal Risques si trop fort
P réduit l’erreur oscillations
I supprime l’erreur statique dépassement, instabilité
D amortit, stabilise amplification du bruit

Code Arduino du TP

// === TP : PID pour régulation de VITESSE d’un moteur CC ===
// Mesure vitesse = codeur incrémental sur interruption
// Consigne reçue par le Moniteur Série (en tr/min ou en ticks/s)

// --- Pont en H ---
const int M_AV = 3; // PWM forward
const int M_AR = 6; // PWM reverse

// --- Codeur incrémental ---
const int canalA = 2; // interruption 0
const int canalB = 11;

volatile long ticks = 0; // compteur modifié par ISR

// === PID ===
float consigne = 0; // vitesse ciblée (ex : en ticks/s)
float kp = 0.8; // gains PID : à régler en TP
float ki = 0.1;
float kd = 0.05;

float erreur, erreurPrec = 0;
float integral = 0;

// === Mesure période ===
unsigned long lastMeasure = 0;
const unsigned long period = 100; // calcul vitesse toutes les 100 ms

// === Prototypes ===
void ISR_codeur();

Last
update:
2025/11/29
14:01

ssi_elec_regulation_asservissement https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764424874

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 13:54

void commandeMoteur(float pwm);
float lireConsigne();

void setup() {
 Serial.begin(9600);

 pinMode(M_AV, OUTPUT);
 pinMode(M_AR, OUTPUT);

 pinMode(canalB, INPUT);

 attachInterrupt(digitalPinToInterrupt(canalA), ISR_codeur, RISING);

 Serial.println("=== TP : Regulation PID de vitesse ===");
 Serial.println("Entrez une consigne en ticks/s (ex : 200):");
}

// ====================== BOUCLE PRINCIPALE ===========================
void loop() {
 // --- Lecture consigne si disponible ---
 if (Serial.available() > 0) {
 consigne = lireConsigne();
 Serial.print("Nouvelle consigne = ");
 Serial.println(consigne);
 }

 // --- Boucle PID toutes les 100 ms ---
 unsigned long now = millis();
 if (now - lastMeasure >= period) {
 lastMeasure = now;

 long ticksMesures = ticks; // copie atomique
 ticks = 0; // RAZ pour prochaine fenêtre

 float vitesse = ticksMesures * (1000.0 / period); // en ticks/s

 // ================= PID =================
 erreur = consigne - vitesse;
 integral += erreur * (period / 1000.0);
 float deriv = (erreur - erreurPrec) / (period / 1000.0);
 erreurPrec = erreur;

 float commande = kp * erreur + ki * integral + kd * deriv;

 // Limiter entre -255 et 255
 if (commande > 255) commande = 255;
 if (commande < -255) commande = -255;

2026/02/18 13:54 9/9 REGULATION ET ASSERVISSEMENT

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

 commandeMoteur(commande);

 // --- Affichage TP ---
 Serial.print("Consigne=");
 Serial.print(consigne);
 Serial.print(" | Vitesse=");
 Serial.print(vitesse);
 Serial.print(" | PWM=");
 Serial.println(commande);
 }
}

// ========== INTERRUPTIONS CODEUR ==========
void ISR_codeur() {
 if (digitalRead(canalB))
 ticks++;
 else
 ticks--;
}

// ========== COMMANDE MOTEUR ==========
void commandeMoteur(float pwm) {
 if (pwm >= 0) {
 digitalWrite(M_AR, LOW);
 analogWrite(M_AV, pwm);
 } else {
 digitalWrite(M_AV, LOW);
 analogWrite(M_AR, -pwm);
 }
}

// ========== LECTURE CONSIGNE ==========
float lireConsigne() {
 String txt = Serial.readStringUntil('\n');
 txt.trim();
 return txt.toFloat();
}

From:
https://mistert.freeboxos.fr/dokuwiki/ - Wiki de Sébastien TACK

Permanent link:
https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764424874

Last update: 2025/11/29 14:01

https://mistert.freeboxos.fr/dokuwiki/
https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764424874

	[REGULATION ET ASSERVISSEMENT]
	REGULATION ET ASSERVISSEMENT
	COURS
	TP – Régulation de vitesse d’un moteur à courant continu avec PID
	Objectifs du TP
	Travail demandé
	1) Commande du moteur en boucle ouverte
	2) Mise en place d’un correcteur P (Proportionnel)
	3) Mise en place du correcteur I (Intégral)
	4) Mise en place du correcteur D (Dérivé)
	Synthèse des rôles P / I / D

	Code Arduino du TP
	3) Mise en place du correcteur I (Intégral)
	4) Mise en place du correcteur D (Dérivé)
	Synthèse des rôles P / I / D

	Code Arduino du TP

