2026/02/18 13:54 1/9 REGULATION ET ASSERVISSEMENT

REGULATION ET ASSERVISSEMENT

COURS

TSSI cours asservissement.pdf

TP - Régulation de vitesse d’un moteur a courant continu avec PID
Objectifs du TP

- Mesurer la vitesse d'un moteur CC avec un codeur incrémental. - Comprendre la différence entre
boucle ouverte et boucle fermée. - Mettre en ceuvre progressivement un correcteur P, puis PI, puis
PID. - Observer I'erreur statique, le dépassement et la sensibilité au bruit.

Travail demandé

- Décrire la réponse du moteur en boucle ouverte. - Tracer ou décrire la courbe vitesse / consigne
pour P. - Expliquer pourquoi un écart statique persiste. - Montrer comment | supprime cet écart. -
Comparer les dépassements pour P, Pl et PID. - Conclure sur I'intérét des trois termes du PID.

1) Commande du moteur en boucle ouverte
Manipulations : - Envoyer une commande PWM fixe (ex : 50 %, puis 80 %). - Observer la vitesse

indiquée par le programme. - Bloquer Iégérement I'axe du moteur avec le doigt (sans forcer).

Observations attendues : - La vitesse chute immédiatement lorsque I'axe est freiné. - Le moteur ne
corrige pas cette chute : c'est normal en boucle ouverte. - La vitesse dépend de la charge, des
frottements et de la tension.

Conclusion : La boucle ouverte ne permet pas de maintenir une vitesse constante.
2) Mise en place d’un correcteur P (Proportionnel)

Manipulations : - Activer le correcteur proportionnel : i = n’f,, £ - Fixer une consigne (ex : 200
ticks/s). - Freiner [égerement le moteur avec le doigt. - Augmenter progressivement Kp : 0.2 - 0.5 -»
1.0 - 2.0.

Observations attendues : - Le moteur augmente la PWM pour compenser la perturbation. - La vitesse
remonte partiellement. - Il reste un écart statique : vitesse réelle < consigne - Si Kp devient trop
grand : oscillations, vibrations, instabilité.

Conclusion : Le correcteur P réduit I'erreur, mais ne la supprime pas.

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

https://mistert.freeboxos.fr/dokuwiki/lib/exe/fetch.php?tok=547a22&media=https%3A%2F%2Fmistert.freeboxos.fr%2Fcours%2F_%2F_herbin%2FTSI-2022%2Fr%C3%A9gulation%0A%20-%20asservissement%2FTSSI%20cours%20asservissement.pdf

Last
update:
2025/11/29
14:01

ssi_elec_regulation_asservissement https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764424874

3) Mise en place du correcteur | (Intégral)

Manipulations : - Ajouter le terme intégral : u = A e; +: K [..r (t),dt - Débuter avec Ki = 0.05,

puis 0.1 max. - Freiner I'axe puis relacher.

Observations attendues : - L'erreur statique disparait. - La vitesse atteint précisément la consigne. -
Si Ki trop fort : dépassement, oscillations lentes, instabilité.

Conclusion : Le correcteur | supprime I'erreur statique, mais ne doit jamais étre trop fort.

4) Mise en place du correcteur D (Dérivé)

il

Manipulations : - Ajouter le terme dérivé : u = I e: +: I\ /E ,dt: +: fl-;;F - Tester avec Kd =
. f

0.01, puis 0.05. - Freiner I'axe pour observer la réaction.

Observations attendues : - Le systeme est mieux amorti. - Le dépassement diminue. - La stabilité
augmente.

Attention : - Si Kd trop élevé - bruit, vibrations, instabilité.

Conclusion : Le terme D stabilise le systeme, mais n'améliore pas la précision.

Synthese des rolesP/1/D

Correcteur Role principal Risques si trop fort

P réduit I'erreur oscillations

I supprime I'erreur statique dépassement, instabilité
D amortit, stabilise amplification du bruit

Code Arduino du TP

// === TP : PID pour régulation de VITESSE d’un moteur CC === // Mesure
vitesse = codeur incrémental sur interruption // Consigne recue par le
Moniteur Série (en tr/min ou en ticks/s)

// --- Pont en H ---
const int M_AV = 3; // PWM forward
const int M AR = 6; // PWM reverse

// --- Codeur incrémental ---
const int canalA = 2; // interruption 0
const int canalB = 11;

volatile long ticks = 0; // compteur modifié par ISR

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 13:54

2026/02/18 13:54 3/9 REGULATION ET ASSERVISSEMENT

// === PID ===
float consigne = 0; // vitesse ciblée (ex : en ticks/s)
float kp = 0.8; // gains PID : a régler en TP

float ki = 0.1;

float kd = 0.05;

float erreur, erreurPrec = 0;
float integral = 0;

// === Mesure période ===
unsigned long lastMeasure = 0;
const unsigned long period = 100; // calcul vitesse toutes les 100 ms

// === Prototypes ===

void ISR codeur();

void commandeMoteur(float pwm);
float lireConsigne();

void setup() {
Serial.begin(9600);

pinMode(M AV, OUTPUT);
pinMode(M AR, OUTPUT);

pinMode(canalB, INPUT);
attachInterrupt(digitalPinToInterrupt(canalA), ISR codeur, RISING);
Serial.println("=== TP : Regulation PID de vitesse ===");

Serial.println("Entrez une consigne en ticks/s (ex : 200):");

}

// BOUCLE PRINCIPALE
void loop() A
// --- Lecture consigne si disponible ---

if (Serial.available() > 0) {
consigne = lireConsigne();
Serial.print("Nouvelle consigne = ");
Serial.println(consigne);

}

// --- Boucle PID toutes les 100 ms ---
unsigned long now = millis();

if (now - lastMeasure >= period) {
lastMeasure = now;

long ticksMesures = ticks; // copie atomique
ticks = 0; // RAZ pour prochaine fenétre

float vitesse = ticksMesures * (1000.0 / period); // en ticks/s

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

Last
update:
2025/11/29
14:01

// PID
erreur = consigne - vitesse;

integral += erreur * (period / 1000.0);

float deriv = (erreur - erreurPrec) / (period / 1000.0);
erreurPrec = erreur;

ssi_elec_regulation_asservissement https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764424874

float commande = kp * erreur + ki * integral + kd * deriv;

// Limiter entre -255 et 255
if (commande > 255) commande = 255;
if (commande < -255) commande = -255;

commandeMoteur (commande) ;
// --- Affichage TP ---

Serial.print("Consigne=");
Serial.print(consigne);

Serial.print(" | Vitesse=");
Serial.print(vitesse);
Serial.print(" | PWM=");

Serial.println(commande);

// ========== INTERRUPTIONS CODEUR ==========
void ISR codeur() {

if (digitalRead(canalB))

ticks++;

else

ticks--;

// ========== (COMMANDE MOTEUR ==========
void commandeMoteur(float pwm) {

if (pwm >= 0) {

digitalWrite(M AR, LOW);
analogWrite(M AV, pwm);

} else {

digitalWrite(M AV, LOW);
analogWrite(M AR, -pwm);

// ========== LECTURE CONSIGNE ==========
float lireConsigne() {

String txt = Serial.readStringUntil('\n"');
txt.trim();

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 13:54

2026/02/18 13:54 5/9 REGULATION ET ASSERVISSEMENT

return txt.toFloat();
}

Si tu veux, je t'ajoute :

[une version imprimable PDF [J un schéma fonctionnel de la boucle PID [J une activité
complémentaire “réglage Ziegler-Nichols” [J un graphe ASCII montrant

Vous avez dit : les Istes en - marchent pas garder * ChatGPT a dit : Réflexion durant 4 secondes

Voici la version corrigée avec les listes en * (et toujours gras + balises

).
===== REGULATION ET ASSERVISSEMENT =====
==== COURS ====
https://mistert.freeboxos.fr/cours/ perbin /TSI - 2022/régulation —
asservissement [T SSTcoursasservissement.pdf
==== TP — Régulation de vitesse d'un moteur a4 courant continu avec PID
=== Objectifs du TP ===
Mesurer la vitesse d'un moteur CC avec un codeur incrémental.
Comprendre la différence entre boucle ouverte et boucle fermée.
Mettre en ceuvre progressivement un correcteur P, puis PI, puis PID.
Observer 'erreur statique, le dépassement et la sensibilité au bruit.
=== Travail demandé ===
Décrire la réponse du moteur en boucle ouverte.
Tracer ou décrire la courbe vitesse / consigne pour P.
Expliquer pourquoi un écart statique persiste.
Montrer comment | supprime cet écart.
Comparer les dépassements pour P, PI et PID.
Conclure sur I'intéret des trois termes du PID.
=== 1) Commande du moteur en boucle ouverte ===
Manipulations :
Envoyer une commande PWM fixe (ex : 50
Observer la vitesse indiquée par le programme.
Bloquer légérement 'axe du moteur avec le doigt (sans forcer).
Observations attendues :
La vitesse chute immeédiatement lorsque I'axe est freiné.
Le moteur ne corrige pas cette chute : ¢’est normal en boucle ouverte.
La vitesse dépend de la charge, des frottements et de la tension.
Conclusion : La boucle ouverte ne permet pas de maintenir une vitesse con-
stante.
=== 2) Mise en place d'un correcteur P (Proportionnel) ===
Manipulations :
Activer le correcteur proportionnel : jmtju = K, -e

Fixer une consigne (ex : 200 ticks/s).

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

Last
update:
2025/11/29
14:01

ssi_elec_regulation_asservissement https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764424874

Freiner [égerement le moteur avec le doigt.

Augmenter progressivementK p: 0.2 - 0.5 - 1.0 » 2.0.
Observations attendues :

Le moteur augmente la PWM pour compenser la perturbation.
La vitesse remonte partiellement.

Il reste un écart statique : vitesse réelle < consigne

Si K _p devient trop grand : oscillations, vibrations, instabilité.

Conclusion : Le correcteur P réduit I'erreur, mais ne la supprime pas.
3) Mise en place du correcteur | (Intégral)

Manipulations :
Ajouter le terme intégral : u = A e + I /f[_r‘il.fh‘

Débuter avec K | = 0.05, puis 0.1 max.
Freiner I'axe puis relacher.

Observations attendues :

L'erreur statique disparait.

La vitesse atteint précisément la consigne.

Si K | est trop fort : dépassement, oscillations lentes, instabilité.

Conclusion : Le correcteur | supprime I'erreur statique, mais ne doit jamais étre trop fort.

4) Mise en place du correcteur D (Dérivé)

Manipulations :

. . e
Ajouter le terme dérivé : u = K e+ I\ /-f.fl"i' { h.,r;ﬁ
, i

Tester avec K D = 0.01, puis 0.05.
Freiner I'axe pour observer la réaction.

Observations attendues :

https://mistert.freeboxos.fr/dokuwiki/

Printed on 2026/02/18 13:54

2026/02/18 13:54 7/9 REGULATION ET ASSERVISSEMENT

Le systeme est mieux amorti.

Le dépassement diminue.

La stabilité augmente.

Attention :

Si K_D est trop élevé - bruit, vibrations, instabilité.

Conclusion : Le terme D stabilise le systeme, mais n"améliore pas la précision.

Synthese des roles P /1 /D

Correcteur Role principal Risques si trop fort

P réduit I'erreur oscillations

I supprime I'erreur statique|dépassement, instabilité
D amortit, stabilise amplification du bruit

Code Arduino du TP

// === TP : PID pour régulation de VITESSE d’un moteur CC ===
// Mesure vitesse = codeur incrémental sur interruption
// Consigne recue par le Moniteur Série (en tr/min ou en ticks/s)

// --- Pont en H ---
const int M AV = 3; // PWM forward
const int M AR = 6; // PWM reverse

// --- Codeur incrémental ---
const int canalA = 2; // interruption 0
const int canalB = 11;

volatile long ticks = 0; // compteur modifié par ISR

// === PID —
float consigne = 0; // vitesse ciblée (ex : en ticks/s)
float kp = 0.8; // gains PID : a régler en TP

float ki = 0.1;
float kd = 0.05;

float erreur, erreurPrec = 0;
float integral = 0;

// === Mesure période ===
unsigned long lastMeasure = 0;
const unsigned long period = 100; // calcul vitesse toutes les 100 ms

// === Prototypes ===
void ISR codeur();

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

Last
update:
2025/11/29
14:01

ssi_elec_regulation_asservissement https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764424874

void commandeMoteur(float pwm);
float lireConsigne();

void setup() {
Serial.begin(9600);

pinMode(M AV, OUTPUT);
pinMode(M AR, OUTPUT);

pinMode(canalB, INPUT);
attachInterrupt(digitalPinToInterrupt(canalA), ISR codeur, RISING);

Serial.println("=== TP : Regulation PID de vitesse ===");
Serial.println("Entrez une consigne en ticks/s (ex : 200):");

// BOUCLE PRINCIPALE
void loop() A
// --- Lecture consigne si disponible ---
if (Serial.available() > 0) {
consigne = lireConsigne();
Serial.print("Nouvelle consigne = ");
Serial.println(consigne);

}

// --- Boucle PID toutes les 100 ms ---

unsigned long now = millis();

if (now - lastMeasure >= period) {
lastMeasure = now;

long ticksMesures = ticks; // copie atomique
ticks = 0; // RAZ pour prochaine fenétre

float vitesse = ticksMesures * (1000.0 / period); // en ticks/s

// PID
erreur = consigne - vitesse;

integral += erreur * (period / 1000.0);

float deriv = (erreur - erreurPrec) / (period / 1000.0);
erreurPrec = erreur;

float commande = kp * erreur + ki * integral + kd * deriv;

// Limiter entre -255 et 255
if (commande > 255) commande = 255;
if (commande < -255) commande = -255;

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 13:54

2026/02/18 13:54 9/9 REGULATION ET ASSERVISSEMENT

commandeMoteur (commande) ;

// --- Affichage TP ---
Serial.print("Consigne=");
Serial.print(consigne);

Serial.print(" | Vitesse=");
Serial.print(vitesse);
Serial.print(" | PWM=");
Serial.println(commande);
}
}
// ========== INTERRUPTIONS CODEUR ==========

void ISR codeur() {
if (digitalRead(canalB))

ticks++;
else
ticks--;
}

void commandeMoteur(float pwm) {
if (pwm >= 0) {
digitalWrite(M AR, LOW);
analogWrite(M AV, pwm);
} else {
digitalWrite(M AV, LOW);
analogWrite(M AR, -pwm);

// ========== LECTURE CONSIGNE ==========
float lireConsigne() {
String txt = Serial.readStringUntil('\n"');
txt.trim();
return txt.toFloat();

}

From:
https://mistert.freeboxos.fr/dokuwiki/ - Wiki de Sébastien TACK

Permanent link:
https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764424874

Last update: 2025/11/29 14:01

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

https://mistert.freeboxos.fr/dokuwiki/
https://mistert.freeboxos.fr/dokuwiki/doku.php?id=ssi_elec_regulation_asservissement&rev=1764424874

	[REGULATION ET ASSERVISSEMENT]
	REGULATION ET ASSERVISSEMENT
	COURS
	TP – Régulation de vitesse d’un moteur à courant continu avec PID
	Objectifs du TP
	Travail demandé
	1) Commande du moteur en boucle ouverte
	2) Mise en place d’un correcteur P (Proportionnel)
	3) Mise en place du correcteur I (Intégral)
	4) Mise en place du correcteur D (Dérivé)
	Synthèse des rôles P / I / D

	Code Arduino du TP
	3) Mise en place du correcteur I (Intégral)
	4) Mise en place du correcteur D (Dérivé)
	Synthèse des rôles P / I / D

	Code Arduino du TP

