2026/02/18 19:23 1/4 LOGICIEL LOGICAL EDITOR

LOGICIEL LOGICAL EDITOR

1 MIT-LogicalEditor (sebastien.tack@free.fr) -] X

Fichier Edition
AMD3 A=BTMN1_S

LABEL_A=BTMT_S
LAREL_B=BTHZ_S

B T00LS
NOTE

5 EfS

| LED

JUNCTION

BTN

Dot

#zB
E20
Q2B
CPTE

OcsT

B COMBIMATOIRE
ALLE

NOT

AND

03]

HOR

NAOR

HAND

HNOR

1
o]
o]
o]

[simulation e 11 Iv debug

Simulogic — Simulateur logique et micro-contréleur pédagogique *Lazarus / FreePascal — Octobre
2025%*

Objectif du projet
SimuLogic est un environnement développé sous Lazarus / FreePascal permettant :

- de construire et simuler des circuits logiques combinatoires et séquentiels ; - de composer
progressivement un micro-contréleur rudimentaire, avec :

un gestionnaire de bus,

une mémoire ROM contenant un programme,

une RAM 8 bits,

un registre d’instruction (IR),

un registre accumulateur (A),

une unité arithmétique et logique (ALU),

un compteur ordinal (PC),

un controleur / unité de commande capable de décoder les instructions.

N U AW

L'objectif est un outil pédagogique puissant, simple d'accées, adapté a I'enseignement des systemes
logiques, des microarchitectures et de la programmation bas-niveau.

Philosophie du logiciel

1. Le concret d'abord

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

Last update: 2025/12/08 10:43 logical_editor https://mistert.freeboxos.fr/dokuwiki/doku.php?id=logical_editor&rev=1765190623

SimuLogic rend visibles :

1. la propagation des bits,

2. le role des bascules et des fronts d'horloge,

3. la circulation des données dans les bus,

4. le fonctionnement interne d'un micro-controleur.

L'éleve observe le systeme fonctionner étape par étape, ce qui ancre les concepts abstraits dans
I'expérience concrete.

2. Une logique unifiée : combinatoire + séquentielle

Le moteur interne repose sur deux passes :

1. Passage séquentiel — traitement des signaux mémorisés (@signal)
2. Passage combinatoire — propagation logique instantanée

Cette architecture clarifie la différence entre mémoire et logique et permet de créer des circuits
fiables et pédagogiques.

3. Construire un micro-controleur, brique par brique
Chaque composant du micro-controleur est représenté par un bloc :

PC (compteur ordinal)

IR (registre d’instruction)

A (accumulateur)

ALU (arithmétique et logique)
ROM (programme)

RAM (mémoire de données)
BUS (sélection de sources)
CTRL (décodage d'instruction)

O N U AW

L'utilisateur peut cabler son propre micro-contréleur et observer son fonctionnement interne, ce qu'un
matériel réel ne permet pas de maniere aussi transparente.

Construction de circuits
L'utilisateur dispose de nombreux composants :

portes logiques (AND, OR, XOR, NOT...)
multiplexeurs

bascules (RS, JK, D, T)

compteurs

bus 4 ou 8 bits

registres

RAM et ROM

afficheurs (LED, 7 segments)

labels (renommage et routage local)
notes

CLOo~NU AWM H

=

Chaque bloc possede :

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 19:23

2026/02/18 19:23 3/4 LOGICIEL LOGICAL EDITOR

1. des entrées et sorties nommées,
2. des équations logiques internes en notation RPN,
3. un préfixe automatique évitant les collisions de noms.

Les connexions se font intuitivement par clic, méme dans des circuits complexes.
Simulation

Simulation en temps réel via timer ou en mode pas-a-pas.
Affichage direct de :

I'état des bits,

les valeurs des bus,

I'état des registres,

le cycle d'exécution d’une instruction.

ok wNhe

La mémoire interne peut étre inspectée et figée pour analyser un cycle.
Simulation d’un micro-contréleur rudimentaire

Pipeline minimal

1. **FETCH**
- PC fournit 1’adresse
- ROM renvoie 1'octet d’'instruction
- IR se charge

2. **DECODE**

- Le controleur active LOAD A, ALU SEL, BUS SEL, RAM RW, etc.
3. **EXECUTE**

- ALU calcule

- Accumulateur ou RAM mis a jour selon 1’instruction

Jeu d’instructions typique

. LDA imm : charger une constante
. ADD imm : addition immédiate

. STA addr : stocker A en RAM

. LDA addr : charger depuis la RAM
. JMP addr : saut inconditionnel

u b~ WN -

L'éleve voit littéralement les signaux s’activer et le bus commuter, ce qui concrétise la micro-
architecture.

Public visé

- Enseignants en sciences de I'ingénieur (STI2D / SSI) - Etudiants en électronique ou informatique -
Makers souhaitant comprendre I'intérieur d’un CPU - Eléves débutants en logique numérique

Pourquoi ce logiciel est unique ?

- Il combine éditeur visuel, simulateur logique, gestion des bus et micro-architecture compléte. - Il est
basé sur Lazarus/FreePascal : libre, modifiable, pédagogiquement clair. - Il offre une visualisation
interne du micro-contréleur, habituellement invisible. - Sa logique interne simple mais cohérente est

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

Last update: 2025/12/08 10:43 logical_editor https://mistert.freeboxos.fr/dokuwiki/doku.php?id=logical_editor&rev=1765190623

idéale pour la formation.
Evolutions possibles

- Breakpoints et debug instruction par instruction - Registres supplémentaires - ALU paramétrable -
Jeu d'instructions étendu - Export en VHDL/Verilog - Interaction avec microcontréleurs réels via liaison
série

From:
https://mistert.freeboxos.fr/dokuwiki/ - Wiki de Sébastien TACK

Permanent link: 5
https://mistert.freeboxos.fr/dokuwiki/doku.php?id=logical_editor&rev=1765190623 ¥&,

Last update: 2025/12/08 10:43

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 19:23

https://mistert.freeboxos.fr/dokuwiki/
https://mistert.freeboxos.fr/dokuwiki/doku.php?id=logical_editor&rev=1765190623

	[LOGICIEL LOGICAL EDITOR]
	LOGICIEL LOGICAL EDITOR

