2026/02/18 19:23 1/4 LOGICIEL LOGICAL EDITOR

LOGICIEL LOGICAL EDITOR

1 MIT-LogicalEditor (sebastien.tack@free.fr) -] X

Fichier Edition
AMD3 A=BTMN1_S

LABEL_A=BTMT_S
LAREL_B=BTHZ_S

B T00LS
NOTE

5 EfS

| LED

JUNCTION

BTN

Dot

#zB
E20
Q2B
CPTE

OcsT
B COMBIMATOIRE

ALLE

NOT

AND

03]

HOR

NAOR

HAND

HNOR

1
o]
o]
o]

[simulation e 11 Iv debug

SimuLogic — Simulateur logique et micro-contréleur pédagogique *Lazarus / FreePascal — Octobre
2025%*

Objectif du projet
SimuLogic est un environnement développé sous Lazarus / FreePascal permettant :

- de construire et simuler des circuits logiques combinatoires et séquentiels ; - de composer
progressivement un micro-contréleur rudimentaire, avec :

un gestionnaire de bus,

une mémoire ROM contenant un programme,

une RAM 8 bits,

un registre d’instruction (IR),

un registre accumulateur (A),

une unité arithmétique et logique (ALU),

un compteur ordinal (PC),

un controleur / unité de commande capable de décoder les instructions.

N U AW

L'objectif est un outil pédagogique puissant, simple d'accées, adapté a I'enseignement des systemes
logiques, des microarchitectures et de la programmation bas-niveau.

Philosophie du logiciel

##4# 1. Le concret d’abord

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

Last update: 2025/12/08 10:37 logical_editor https://mistert.freeboxos.fr/dokuwiki/doku.php?id=logical_editor&rev=1765190243

SimuLogic rend visibles :

- la propagation des bits, - le role des bascules et des fronts d'horloge, - la circulation des données
dans les bus, - le fonctionnement interne d’un micro-controleur.

L'éleve observe le systeme fonctionner étape par étape, ce qui ancre les concepts abstraits dans
I'expérience concrete.

2. Une logique unifiée : combinatoire + séquentielle
Le moteur interne repose sur deux passes :

1. Passage séquentiel — traitement des signaux mémorisés (@signal) 2. Passage combinatoire —
propagation logique instantanée

Cette architecture clarifie la différence entre mémoire et logique et permet de créer des circuits
fiables et pédagogiques.

##4# 3. Construire un micro-contréleur, brique par brique
Chaque composant du micro-controleur est représenté par un bloc :

- PC (compteur ordinal) - IR (registre d'instruction) - A (accumulateur) - ALU (arithmétique et logique) -
ROM (programme) - RAM (mémoire de données) - BUS (sélection de sources) - CTRL (décodage
d’instruction)

L'utilisateur peut cabler son propre micro-controleur et observer son fonctionnement interne, ce qu'un
matériel réel ne permet pas de maniere aussi transparente.

Construction de circuits
L'utilisateur dispose de nombreux composants :

- portes logiques (AND, OR, XOR, NOT...) - multiplexeurs - bascules (RS, JK, D, T) - compteurs - bus 4
ou 8 bits - registres - RAM et ROM - afficheurs (LED, 7 segments) - labels (renommage et routage
local) - notes

Chaque bloc posséde :

- des entrées et sorties nommeées, - des équations logiques internes en notation RPN, - un préfixe
automatique évitant les collisions de noms.

Les connexions se font intuitivement par clic, méme dans des circuits complexes.

Simulation
- Simulation en temps réel via timer ou en mode pas-a-pas. - Affichage direct de :

1. I'état des bits,
2. les valeurs des bus,

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 19:23

2026/02/18 19:23 3/4 LOGICIEL LOGICAL EDITOR

3. I'état des registres,
4. le cycle d'exécution d’une instruction.

La mémoire interne peut étre inspectée et figée pour analyser un cycle.

Simulation d’'un micro-contréleur rudimentaire
Pipeline minimal
1. FETCH

1. PC fournit I'adresse
2. ROM renvoie I'octet d’instruction
3. IR se charge

2. DECODE
1. Le contrbleur active LOAD_A, ALU_SEL, BUS_SEL, RAM_RW, etc.
3. EXECUTE

1. ALU calcule
2. Accumulateur ou RAM mis a jour selon I'instruction

##+# Jeu d'instructions typique

- LDA imm : charger une constante - ADD imm : addition immédiate - STA addr : stocker A en RAM -
LDA addr : charger depuis la RAM - JMP addr : saut inconditionnel

L'éleve voit littéralement les signaux s’activer et le bus commuter, ce qui concrétise la micro-
architecture.

#4# Public visé

- Enseignants en sciences de I'ingénieur (STI2D / SSI) - Etudiants en électronique ou informatique -
Makers souhaitant comprendre I'intérieur d’un CPU - Eléves débutants en logique numérique

Pourquoi ce logiciel est unique ?

- Il combine éditeur visuel, simulateur logique, gestion des bus et micro-architecture compléte. - Il est
basé sur Lazarus/FreePascal : libre, modifiable, pédagogiquement clair. - Il offre une visualisation
interne du micro-contréleur, habituellement invisible. - Sa logique interne simple mais cohérente est
idéale pour la formation.

Evolutions possibles

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

Last update: 2025/12/08 10:37 logical_editor https://mistert.freeboxos.fr/dokuwiki/doku.php?id=logical_editor&rev=1765190243

- Breakpoints et debug instruction par instruction - Registres supplémentaires - ALU paramétrable -
Jeu d’instructions étendu - Export en VHDL/Verilog - Interaction avec microcontréleurs réels via liaison

série

From:
https://mistert.freeboxos.fr/dokuwiki/ - Wiki de Sébastien TACK

Permanent link: F
https://mistert.freeboxos.fr/dokuwiki/doku.php?id=logical_editor&rev=1765190243 ¥

Last update: 2025/12/08 10:37

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 19:23

https://mistert.freeboxos.fr/dokuwiki/
https://mistert.freeboxos.fr/dokuwiki/doku.php?id=logical_editor&rev=1765190243

	[LOGICIEL LOGICAL EDITOR]
	LOGICIEL LOGICAL EDITOR

