2026/02/18 15:13 1/8 Arduino et Python

Arduino et Python

Disons le d'emblée ce billet ne vise qu'a montrer comment Arduino et Python peuvent communiquer.
Il s'adresse aux plus téméraires et aux curieux! Vous trouverez sur le Web de multiples ressources a
ce sujet. L'idée est simple: vous avez une version de Python disponible sur le réseau et vous désirez
piloter I'Arduino. Voici comment faire. [Source:
http://www.f-legrand.fr/scidoc/docmml/sciphys/arduino/python/python.html Notons que ce code peut
fonctionner a partir d'une clé USB! Seuls le driver Arduino et le logiciel Arduino (quoiqu'il existe un
plan B ;)) devront étre installés sur le poste.

Le code Arduino

#define PIN MODE 100
#define DIGITAL WRITE 101
#define DIGITAL READ 102
#define ANALOG WRITE 103
#define ANALOG READ 104

void commande pin mode() {
char pin,mode;
while (Serial.available()<2);
pin = Serial.read(); // pin number
mode = Serial.read(); // 0 = INPUT, 1 = OUTPUT
pinMode(pin,mode);

}

void commande digital write() {
char pin,output;
while (Serial.available()<2);
pin = Serial.read(); // pin number
output = Serial.read(); // 0 = LOW, 1 = HIGH
digitalWrite(pin,output);
}

void commande digital read() {
char pin,input;
while (Serial.available()<1);
pin = Serial.read(); // pin number
input = digitalRead(pin);
Serial.write(input);

}

void commande analog write() {
char pin,output;
while (Serial.available()<2);
pin = Serial.read(); // pin number
output = Serial.read(); // PWM value between 0 and 255
analogWrite(pin,output);

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

http://www.f-legrand.fr/scidoc/docmml/sciphys/arduino/python/python.html

Last update:

B, i /mi iki ?id=13 - i =
2020/09/26 15:15 13 - arduino_et_python https://mistert.freeboxos.fr/dokuwiki/doku.php?id=13_- arduino_et python&rev=1530802889

void commande analog read() {
char pin;
int value;
while (Serial.available()<1);
pin = Serial.read(); // pin number
value = analogRead(pin);
Serial.write((value>>8)&0xFF); // 8 bits de poids fort
Serial.write(value & OxFF); // 8 bits de poids faible

}

void setup() {
char c;
Serial.begin(500000);
Serial.flush();
c =0;
Serial.write(c);
c = 255;
Serial.write(c);
c =0;
Serial.write(c);

}

void loop() A

char commande;

if (Serial.available()>0) {
commande = Serial.read();
if (commande==PIN MODE) commande pin mode();
else if (commande==DIGITAL WRITE) commande digital write();
else if (commande==DIGITAL READ) commande digital read();
else if (commande==ANALOG WRITE) commande analog write();
else if (commande==ANALOG READ) commande analog read();

}

// autres actions a placer ici

}

Le protocole d'échange est basé sur I'envoi de caracteres en 8 bits sur la liaison série. Une séquence
d'initialisation 0-255-0 permet d'indiquer que I'arduino est préte.

[l'y a un code pour les différentes commandes.

#define PIN MODE 100
#define DIGITAL WRITE 101
#define DIGITAL READ 102
#define ANALOG WRITE 103
#define ANALOG READ 104

A chaque commande un certain nombre de parametres est requis. Pour écrire sur une sortie digitale
on enverra trois caracteres: 101 (pin) (output). Actionner la sortie 13: 101-13-1

Ce code vous permet d'ajouter des fonctionnalités comme des composants branchés en 12C avec des
codes de commandes que vous pourrez ajouter facilement. L'on pourrait également ajouter la lecture

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 15:13

2026/02/18 15:13 3/8 Arduino et Python

d'un capteur température/humidité DHT11/DHT22 (ce sera votre devoir de vacances ;)).
Une classe python est créée pour permettre un interfagage facile.

commandesPython.py

-*- coding: utf-8 -*-
import serial
class Arduino():
def init (self,port):
self.ser = serial.Serial(port,baudrate=500000)
c recu = self.ser.read(1)
while ord(c recu)!=0:
c _recu = self.ser.read(1)
c _recu = self.ser.read(1)
while ord(c_recu)!=255:
Cc_recu = self.ser.read(1)
c recu = self.ser.read(1)
while ord(c_recu)!=0:
c_recu = self.ser.read(1)
self.PIN MODE = 100
self.DIGITAL WRITE = 101
self.DIGITAL READ = 102
self.ANALOG WRITE = 103
self.ANALOG READ = 104
self.INPUT = 0O
self.OUTPUT = 1
self.LOW = 0
self.HIGH = 1
def close(self):
self.ser.close()

def pinMode(self,pin,mode):
self.ser.write(chr(self.PIN MODE).encode())
self.ser.write(chr(pin).encode())
self.ser.write(chr(mode).encode())

def digitalWrite(self,pin,output):
self.ser.write(chr(self.DIGITAL WRITE).encode())
self.ser.write(chr(pin).encode())
self.ser.write(chr(output).encode())

def digitalRead(self,pin):
self.ser.write(chr(self.DIGITAL READ).encode())
self.ser.write(chr(pin).encode())
x = self.ser.read(1)
return ord(x)

def analogWrite(self,pin,output):
self.ser.write(chr(self.ANALOG WRITE).encode())
self.ser.write(chr(pin).encode())

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

Last update:) . e Qe 2413 . . _
2020/09/26 15:15 13 - arduino_et_python https://mistert.freeboxos.fr/dokuwiki/doku.php?id=13_- arduino_et python&rev=1530802889

self.ser.write(chr(output).encode())

def analogRead(self,pin):
self.ser.write(chr(self.ANALOG READ) .encode())
self.ser.write(chr(pin).encode())
cl = ord(self.ser.read(1))
c2 = ord(self.ser.read(1))
return cl*0x100+c2

fichier test.py

-*- coding: utf-8 -*-
import time
from commandesPython import Arduino

port = "COM8"
ard = Arduino(port)
ard.pinMode(13,ard.OUTPUT)

for i in range(10):
print(ard.analogRead(0))
print(i)
ard.digitalWrite(13,ard.HIGH)
time.sleep(0.5)
ard.digitalWrite(13,ard.LOW)
time.sleep(0.5)

ard.close()

Si la commande en ligne de commande vous semble trop austere, il est possible d'ajouter un contexte
fenétré facilement.

-*- coding: utf-8 -*-

import time

from commandesPython import Arduino
from tkinter import *

class App(Arduino):
def init (self):

self.port = "COM8"
self.ard = Arduino(self.port)
self.W=200
self.H=200
self.root = Tk()
self.create interface()
self.update clock()
self.configure()
self.root.mainloop()

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 15:13

2026/02/18 15:13 5/8 Arduino et Python

def send arduino(self):
self.ard.digitalWrite(13,self.ard.HIGH)
time.sleep(0.25)
self.ard.digitalWrite(13,self.ard.LOW)
time.sleep(0.25)

def create interface(self):
can = Canvas(self.root, width=self.W, height=self.H, bg='ivory"')
can.pack(side=TOP, padx= 5, pady= 5)
btnl = Button(self.root, text="Arduino", command =

self.send arduino)

btnl.pack(side=LEFT)
self.textl=Label(self.root, text="AO: ", fg="red")
self.textl.pack()

def configure(self):
self.ard.pinMode(13,self.ard.OUTPUT)

def update clock(self):
now = time.strftime("%H:%M:%S")
self.textl.configure(text= self.ard.analogRead(0))
self.root.after (1000, self.update clock)

app=App ()

Deuxieme exemple, plus évolué: un programme python qui embargue un serveur twisted pour
controler I'Arduino. Exemple de commandes:

Allumer la sortie digitale 5
Eteindre la sortie digitale 5
Lire I\'entrée analogique AO
Lire la température sur le dht11<A>

Programme de gestion d'une Arduino a partir de Python
A partir de tkinter, twisted et commandesPython (R)
MrT - sebastien.tack@ac-caen.fr

from tkinter import *

from twisted.internet import tksupport, reactor

from twisted.web import server, resource

from twisted.internet import reactor, endpoints

from commandesPython import Arduino

import serial.tools.list ports

import sys

class Counter(resource.Resource):
isLeaf = True
numberRequests = 0
def init (self, root):

Constructeur de la classe

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

Last update:

2020/09/26 15:15

def

def

def

self.root root
self.port = None
ports = list(serial.tools.list ports.comports())
for p in ports:
if "Arduino" in p[1]:
self.port =str(p[l][p[1l].find("(")+1:p[1].find(")")])
try:
self.ard = Arduino(self.port)
except:
print("Branchez 1'arduino, Svp!")
self.root.destroy()
sys.exit(1)
self.make interface()

make interface(self):

Création de 1'interface tk

self.text2 = Label(self.root, text="Voir http://localhost:8080/")
self.text2.pack()

send arduino(self,port,value):

Envoi des ordres en sortie sur Arduino
self.ard.digitalWrite(port,value)
render GET(self, request):

Gestion des réponses GET
#self.text2.configure(text= "ok")
self.numberRequests += 1
#trouver path
content= ""
req = request.uri
if b'favicon' in req:
pass
if req==b'/"':
content ='<!DOCTYPE html><html><head><meta charset="utf-8"

/></head><body>"

content += "Exemples ..."
content += "
"
content += u'
Allumer la sortie digitale

5"

content += u'
Eteindre la sortie digitale

5"

content += u'
Lire 1\'entrée analogique

AO'

https://mistert.freeboxos.fr/dokuwiki/

13 - arduino_et_python https://mistert.freeboxos.fr/dokuwiki/doku.php?id=13_- arduino_et python&rev=1530802889

Printed on 2026/02/18 15:13

2026/02/18 15:13 7/8 Arduino et Python

content += u'
Lire la température sur le dhtll
en pin 4'

content += "</body></html>"

if b'/set/digital' in req:

ordres = req.split(b'/")

pin = int(ordres[3])

mode = (ordres[4] == b'on")

self.ard.pinMode(pin,self.ard.QUTPUT)

self.send arduino(pin, mode)

content ='<!DOCTYPE html><html><head><meta charset="utf-8"
/></head><body>"

content = "Sending "+str(mode)+" to pin "+str(pin)

content += "</body></html>"

if b'/get/analogic' in req:
ordres = req.split(b'/")
pin = int(ordres[3])
value = self.ard.analogRead(pin)
content ='<IDOCTYPE html><html><head><meta charset="utf-8"
/></head><body>"
content += "Pin "+str(pin)+" is to "+str(value)
content += "</body></html>"
if b'/temp/dht' in req:
ordres = req.split(b'/")
pin = int(ordres[3])
mode = int(ordres[4])
self.ard.pinMode(pin,self.ard.INPUT)
content ='<!DOCTYPE html><html><head><meta charset="utf-8"
/></head><body>"
content += u"Température "+self.ard.dht read(pin,mode)+" °C"
content += "</body></html>"
request.setHeader(b"content-type", b"text/html")
return content.encode("utf-8")

Début du programme

try:
site = Counter(Tk())
tksupport.install(site.root)
endpoints.serverFromString(reactor,

"tcp:8080").listen(server.Site(site))
reactor.run()

except:
pass

On peut maintenant construire des pages HTML et réaliser des requétes Ajax en jQuery sur ces URL
pour piloter une Arduino a partir de pages Web. ;)

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

Last update:

B, i /mi iki ?id=13 - i =
2020/09/26 15:15 13 - arduino_et_python https://mistert.freeboxos.fr/dokuwiki/doku.php?id=13_- arduino_et python&rev=1530802889

From:
https://mistert.freeboxos.fr/dokuwiki/ - Wiki de Sébastien TACK

Permanent link:
https://mistert.freeboxos.fr/dokuwiki/doku.php?id=13 - arduino_et_python&rev=1530802889 =¥:

Last update: 2020/09/26 15:15

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 15:13

https://mistert.freeboxos.fr/dokuwiki/
https://mistert.freeboxos.fr/dokuwiki/doku.php?id=13_-_arduino_et_python&rev=1530802889

	[Arduino et Python]
	[Arduino et Python]
	[Arduino et Python]
	Arduino et Python

