
2026/02/18 15:13 1/8 Arduino et Python

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

Arduino et Python

Disons le d'emblée ce billet ne vise qu'à montrer comment Arduino et Python peuvent communiquer.
Il s'adresse aux plus téméraires et aux curieux! Vous trouverez sur le Web de multiples ressources à
ce sujet. L'idée est simple: vous avez une version de Python disponible sur le réseau et vous désirez
piloter l'Arduino. Voici comment faire. [Source:
http://www.f-legrand.fr/scidoc/docmml/sciphys/arduino/python/python.html Notons que ce code peut
fonctionner à partir d'une clé USB! Seuls le driver Arduino et le logiciel Arduino (quoiqu'il existe un
plan B ;)) devront être installés sur le poste.

Le code Arduino

#define PIN_MODE 100
#define DIGITAL_WRITE 101
#define DIGITAL_READ 102
#define ANALOG_WRITE 103
#define ANALOG_READ 104

void commande_pin_mode() {
 char pin,mode;
 while (Serial.available()<2);
 pin = Serial.read(); // pin number
 mode = Serial.read(); // 0 = INPUT, 1 = OUTPUT
 pinMode(pin,mode);
}

void commande_digital_write() {
 char pin,output;
 while (Serial.available()<2);
 pin = Serial.read(); // pin number
 output = Serial.read(); // 0 = LOW, 1 = HIGH
 digitalWrite(pin,output);
}

void commande_digital_read() {
 char pin,input;
 while (Serial.available()<1);
 pin = Serial.read(); // pin number
 input = digitalRead(pin);
 Serial.write(input);
}

void commande_analog_write() {
 char pin,output;
 while (Serial.available()<2);
 pin = Serial.read(); // pin number
 output = Serial.read(); // PWM value between 0 and 255
 analogWrite(pin,output);
}

http://www.f-legrand.fr/scidoc/docmml/sciphys/arduino/python/python.html

Last update:
2020/09/26 15:15 13_-_arduino_et_python https://mistert.freeboxos.fr/dokuwiki/doku.php?id=13_-_arduino_et_python&rev=1530802889

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 15:13

void commande_analog_read() {
 char pin;
 int value;
 while (Serial.available()<1);
 pin = Serial.read(); // pin number
 value = analogRead(pin);
 Serial.write((value>>8)&0xFF); // 8 bits de poids fort
 Serial.write(value & 0xFF); // 8 bits de poids faible
}

void setup() {
 char c;
 Serial.begin(500000);
 Serial.flush();
 c = 0;
 Serial.write(c);
 c = 255;
 Serial.write(c);
 c = 0;
 Serial.write(c);
}

void loop() {
 char commande;
 if (Serial.available()>0) {
 commande = Serial.read();
 if (commande==PIN_MODE) commande_pin_mode();
 else if (commande==DIGITAL_WRITE) commande_digital_write();
 else if (commande==DIGITAL_READ) commande_digital_read();
 else if (commande==ANALOG_WRITE) commande_analog_write();
 else if (commande==ANALOG_READ) commande_analog_read();
 }
 // autres actions à placer ici
}

Le protocole d'échange est basé sur l'envoi de caractères en 8 bits sur la liaison série. Une séquence
d'initialisation 0-255-0 permet d'indiquer que l'arduino est prête.

Il y a un code pour les différentes commandes.

#define PIN_MODE 100
#define DIGITAL_WRITE 101
#define DIGITAL_READ 102
#define ANALOG_WRITE 103
#define ANALOG_READ 104

A chaque commande un certain nombre de paramètres est requis. Pour écrire sur une sortie digitale
on enverra trois caractères: 101 (pin) (output). Actionner la sortie 13: 101-13-1

Ce code vous permet d'ajouter des fonctionnalités comme des composants branchés en I2C avec des
codes de commandes que vous pourrez ajouter facilement. L'on pourrait également ajouter la lecture

2026/02/18 15:13 3/8 Arduino et Python

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

d'un capteur température/humidité DHT11/DHT22 (ce sera votre devoir de vacances ;)).

Une classe python est créée pour permettre un interfaçage facile.

commandesPython.py

-*- coding: utf-8 -*-
import serial
class Arduino():
 def__init__(self,port):
 self.ser = serial.Serial(port,baudrate=500000)
 c_recu = self.ser.read(1)
 while ord(c_recu)!=0:
 c_recu = self.ser.read(1)
 c_recu = self.ser.read(1)
 while ord(c_recu)!=255:
 c_recu = self.ser.read(1)
 c_recu = self.ser.read(1)
 while ord(c_recu)!=0:
 c_recu = self.ser.read(1)
 self.PIN_MODE = 100
 self.DIGITAL_WRITE = 101
 self.DIGITAL_READ = 102
 self.ANALOG_WRITE = 103
 self.ANALOG_READ = 104
 self.INPUT = 0
 self.OUTPUT = 1
 self.LOW = 0
 self.HIGH = 1
 def close(self):
 self.ser.close()

 def pinMode(self,pin,mode):
 self.ser.write(chr(self.PIN_MODE).encode())
 self.ser.write(chr(pin).encode())
 self.ser.write(chr(mode).encode())

 def digitalWrite(self,pin,output):
 self.ser.write(chr(self.DIGITAL_WRITE).encode())
 self.ser.write(chr(pin).encode())
 self.ser.write(chr(output).encode())

 def digitalRead(self,pin):
 self.ser.write(chr(self.DIGITAL_READ).encode())
 self.ser.write(chr(pin).encode())
 x = self.ser.read(1)
 return ord(x)

 def analogWrite(self,pin,output):
 self.ser.write(chr(self.ANALOG_WRITE).encode())
 self.ser.write(chr(pin).encode())

Last update:
2020/09/26 15:15 13_-_arduino_et_python https://mistert.freeboxos.fr/dokuwiki/doku.php?id=13_-_arduino_et_python&rev=1530802889

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 15:13

 self.ser.write(chr(output).encode())

 def analogRead(self,pin):
 self.ser.write(chr(self.ANALOG_READ).encode())
 self.ser.write(chr(pin).encode())
 c1 = ord(self.ser.read(1))
 c2 = ord(self.ser.read(1))
 return c1*0x100+c2

fichier test.py

-*- coding: utf-8 -*-
import time
from commandesPython import Arduino

port = "COM8"
ard = Arduino(port)
ard.pinMode(13,ard.OUTPUT)

for i in range(10):
 print(ard.analogRead(0))
 print(i)
 ard.digitalWrite(13,ard.HIGH)
 time.sleep(0.5)
 ard.digitalWrite(13,ard.LOW)
 time.sleep(0.5)
ard.close()

Si la commande en ligne de commande vous semble trop austère, il est possible d'ajouter un contexte
fenêtré facilement.

-*- coding: utf-8 -*-
import time
from commandesPython import Arduino
from tkinter import *

class App(Arduino):
 def __init__(self):
 self.port = "COM8"
 self.ard = Arduino(self.port)
 self.W=200
 self.H=200
 self.root = Tk()
 self.create_interface()
 self.update_clock()
 self.configure()
 self.root.mainloop()

2026/02/18 15:13 5/8 Arduino et Python

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

 def send_arduino(self):
 self.ard.digitalWrite(13,self.ard.HIGH)
 time.sleep(0.25)
 self.ard.digitalWrite(13,self.ard.LOW)
 time.sleep(0.25)
 def create_interface(self):
 can = Canvas(self.root, width=self.W, height=self.H, bg='ivory')
 can.pack(side=TOP, padx= 5, pady= 5)
 btn1 = Button(self.root, text="Arduino", command =
self.send_arduino)
 btn1.pack(side=LEFT)
 self.text1=Label(self.root, text="A0: ", fg="red")
 self.text1.pack()

 def configure(self):
 self.ard.pinMode(13,self.ard.OUTPUT)
 def update_clock(self):
 now = time.strftime("%H:%M:%S")
 self.text1.configure(text= self.ard.analogRead(0))
 self.root.after(1000, self.update_clock)

app=App()

Deuxième exemple, plus évolué: un programme python qui embarque un serveur twisted pour
contrôler l'Arduino. Exemple de commandes:

Allumer la sortie digitale 5
Eteindre la sortie digitale 5
Lire l\'entrée analogique A0
Lire la température sur le dht11<A>

"""
Programme de gestion d'une Arduino à partir de Python
A partir de tkinter, twisted et commandesPython (R)
MrT - sebastien.tack@ac-caen.fr
"""
from tkinter import *
from twisted.internet import tksupport, reactor
from twisted.web import server, resource
from twisted.internet import reactor, endpoints
from commandesPython import Arduino
import serial.tools.list_ports
import sys

class Counter(resource.Resource):
 isLeaf = True
 numberRequests = 0
 def __init__(self, root):
 """
 Constructeur de la classe
 """

Last update:
2020/09/26 15:15 13_-_arduino_et_python https://mistert.freeboxos.fr/dokuwiki/doku.php?id=13_-_arduino_et_python&rev=1530802889

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 15:13

 self.root = root
 self.port = None
 ports = list(serial.tools.list_ports.comports())
 for p in ports:
 if "Arduino" in p[1]:
 self.port =str(p[1][p[1].find("(")+1:p[1].find(")")])
 try:
 self.ard = Arduino(self.port)
 except:
 print("Branchez l'arduino, Svp!")
 self.root.destroy()
 sys.exit(1)
 self.make_interface()

 def make_interface(self):
 """
 Création de l'interface tk
 """
 self.text2 = Label(self.root, text="Voir http://localhost:8080/")
 self.text2.pack()
 def send_arduino(self,port,value):
 """
 Envoi des ordres en sortie sur Arduino
 """
 self.ard.digitalWrite(port,value)
 def render_GET(self, request):
 """
 Gestion des réponses GET
 """
 #self.text2.configure(text= "ok")
 self.numberRequests += 1
 #trouver path
 content= ""
 req = request.uri
 if b'favicon' in req:
 pass
 if req==b'/':
 content ='<!DOCTYPE html><html><head><meta charset="utf-8"
/></head><body>'
 content += "Exemples ..."
 content += "
"
 content += u'
Allumer la sortie digitale
5'
 content += u'
Eteindre la sortie digitale
5'
 content += u'
Lire l\'entrée analogique
A0'

2026/02/18 15:13 7/8 Arduino et Python

Wiki de Sébastien TACK - https://mistert.freeboxos.fr/dokuwiki/

 content += u'
Lire la température sur le dht11
en pin 4'
 content += "</body></html>"

 if b'/set/digital' in req:
 ordres = req.split(b'/')
 pin = int(ordres[3])
 mode = (ordres[4] == b'on')
 self.ard.pinMode(pin,self.ard.OUTPUT)
 self.send_arduino(pin, mode)
 content ='<!DOCTYPE html><html><head><meta charset="utf-8"
/></head><body>'
 content = "Sending "+str(mode)+" to pin "+str(pin)
 content += "</body></html>"

 if b'/get/analogic' in req:
 ordres = req.split(b'/')
 pin = int(ordres[3])
 value = self.ard.analogRead(pin)
 content ='<!DOCTYPE html><html><head><meta charset="utf-8"
/></head><body>'
 content += "Pin "+str(pin)+" is to "+str(value)
 content += "</body></html>"
 if b'/temp/dht' in req:
 ordres = req.split(b'/')
 pin = int(ordres[3])
 mode = int(ordres[4])
 self.ard.pinMode(pin,self.ard.INPUT)
 content ='<!DOCTYPE html><html><head><meta charset="utf-8"
/></head><body>'
 content += u"Température "+self.ard.dht_read(pin,mode)+" °C"
 content += "</body></html>"
 request.setHeader(b"content-type", b"text/html")
 return content.encode("utf-8")

"""
Début du programme
"""
try:
 site = Counter(Tk())
 tksupport.install(site.root)
 endpoints.serverFromString(reactor,
"tcp:8080").listen(server.Site(site))
 reactor.run()
except:
 pass

On peut maintenant construire des pages HTML et réaliser des requêtes Ajax en jQuery sur ces URL
pour piloter une Arduino à partir de pages Web. ;)

Last update:
2020/09/26 15:15 13_-_arduino_et_python https://mistert.freeboxos.fr/dokuwiki/doku.php?id=13_-_arduino_et_python&rev=1530802889

https://mistert.freeboxos.fr/dokuwiki/ Printed on 2026/02/18 15:13

From:
https://mistert.freeboxos.fr/dokuwiki/ - Wiki de Sébastien TACK

Permanent link:
https://mistert.freeboxos.fr/dokuwiki/doku.php?id=13_-_arduino_et_python&rev=1530802889

Last update: 2020/09/26 15:15

https://mistert.freeboxos.fr/dokuwiki/
https://mistert.freeboxos.fr/dokuwiki/doku.php?id=13_-_arduino_et_python&rev=1530802889

	[Arduino et Python]
	[Arduino et Python]
	[Arduino et Python]
	Arduino et Python

